/*************************************************************************** * Copyright 2013 CertiVox UK Ltd. * * This file is part of CertiVox MIRACL Crypto SDK. * * The CertiVox MIRACL Crypto SDK provides developers with an * extensive and efficient set of cryptographic functions. * For further information about its features and functionalities please * refer to http://www.certivox.com * * * The CertiVox MIRACL Crypto SDK is free software: you can * redistribute it and/or modify it under the terms of the * GNU Affero General Public License as published by the * Free Software Foundation, either version 3 of the License, * or (at your option) any later version. * * * The CertiVox MIRACL Crypto SDK is distributed in the hope * that it will be useful, but WITHOUT ANY WARRANTY; without even the * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU Affero General Public License for more details. * * * You should have received a copy of the GNU Affero General Public * License along with CertiVox MIRACL Crypto SDK. * If not, see . * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial activities involving the CertiVox MIRACL Crypto SDK * without disclosing the source code of your own applications, or shipping * the CertiVox MIRACL Crypto SDK with a closed source product. * * ***************************************************************************/ /* * MIRACL C++ functions big.cpp * * AUTHOR : N.Coghlan * Modified by M.Scott * * PURPOSE : Implementation of class Big functions */ #include "big.h" void Big::negate() const { negify(fn,fn); } big Big::getbig() const { return fn;} BOOL Big::iszero() const { if (size(fn)==0) return TRUE; return FALSE;} BOOL Big::isone() const { if (size(fn)==1) return TRUE; return FALSE;} int Big::len() const { return numdig(fn); } Big operator-(const Big& b) {Big nb; negify(b.fn,nb.fn); return nb;} Big operator+(const Big& b,int i) {Big abi; incr(b.fn, i, abi.fn); return abi;} Big operator+(int i,const Big& b) {Big aib; incr(b.fn, i, aib.fn); return aib;} Big operator+(const Big& b1, const Big& b2) {Big abb;add(b1.fn,b2.fn,abb.fn);return abb;} Big operator-(const Big& b, int i) {Big mbi; decr(b.fn, i, mbi.fn); return mbi;} Big operator-(int i, const Big& b) {Big mib;decr(b.fn, i, mib.fn);negify(mib.fn,mib.fn);return mib;} Big operator-(const Big& b1, const Big& b2) {Big mbb; subtract(b1.fn,b2.fn,mbb.fn); return mbb;} Big operator*(const Big& b, int i) {Big xbi; premult(b.fn, i, xbi.fn); return xbi;} Big operator*(int i, const Big& b) {Big xib; premult(b.fn, i, xib.fn); return xib;} Big operator*(const Big& b1, const Big& b2) {Big xbb; multiply(b1.fn,b2.fn,xbb.fn); return xbb;} #ifndef MR_STATIC BOOL fmth(int n,const Big& b1,const Big& b2,Big& f) { #ifdef MR_KCM return kcm_top(n,b1.fn,b2.fn,f.fn); /* see mrkcm.tpl */ #else return fastmultop(n,b1.fn,b2.fn,f.fn); /* see mrfast.c */ #endif } #endif Big operator/(const Big& b, int i) {Big dbi; subdiv(b.fn, i, dbi.fn); return dbi;} Big operator/(const Big& b1, const Big& b2) {Big dbb; copy(b1.fn,dbb.fn); divide(dbb.fn,b2.fn,dbb.fn); return dbb;} int operator%(const Big& b, int i) {Big mdbi; return(subdiv(b.fn,i, mdbi.fn));} Big operator%(const Big& b1, const Big& b2) {Big mdbb;copy(b1.fn,mdbb.fn);divide(mdbb.fn,b2.fn,b2.fn);return mdbb;} Big operator<<(const Big& b, int i) {Big ms; sftbit(b.fn,i,ms.fn); return ms;} Big operator>>(const Big& b, int i) {Big ms; sftbit(b.fn,-i,ms.fn); return ms;} #ifndef MR_FP Big land(const Big& x,const Big& y) {Big z; mr_and(x.fn,y.fn,z.fn); return z;} Big lxor(const Big& x,const Big& y) {Big z; mr_xor(x.fn,y.fn,z.fn); return z;} #endif Big from_binary(int len,char *ptr) {Big z; bytes_to_big(len,ptr,z.fn); return z;} //int to_binary(const Big& b,int max,char *ptr,BOOL justify) //{ return big_to_bytes(max,b.fn,ptr,justify);} Big modmult(const Big& b1,const Big& b2,const Big& m) {Big z; mad(b1.fn,b2.fn,b2.fn,m.fn,m.fn,z.fn); return z;} Big mad(const Big& b1,const Big& b2,const Big& b3,const Big& m,Big &r) {Big q; mad(b1.fn,b2.fn,b3.fn,m.fn,q.fn,r.fn); return q;} Big norm(const Big& b) {Big z; normalise(b.fn,z.fn); return z;} Big sqrt(const Big& b) {Big z; nroot(b.fn, 2, z.fn); return z;} Big abs(const Big& b) {Big z; absol(b.fn,z.fn); return z;} Big root(const Big &b,int n) {Big z; nroot(b.fn, n, z.fn); return z;} Big gcd(const Big& b1, const Big& b2){Big z;egcd(b1.fn,b2.fn,z.fn);return z;} Big pow(const Big& b,int n) {Big z;int x; if (mr_abs(x=size(b.fn))fn,z.fn); // else lucas(b1.fn,b2.fn,b3.fn,z.fn,z.fn); //return z;} Big inverse(const Big& b1, const Big& b2) {Big z; xgcd(b1.fn,b2.fn,z.fn,z.fn,z.fn);return z;} Big moddiv(const Big& b1,const Big& b2,const Big& m) {Big z; xgcd(b2.fn,m.fn,z.fn,z.fn,z.fn); mad(b1.fn,z.fn,z.fn,m.fn,m.fn,z.fn); return z;} #ifndef MR_NO_RAND Big rand(const Big& b) {Big z; bigrand(b.fn,z.fn); return z;} Big rand(int n,int b) {Big z; bigdig(n,b,z.fn); return z;} Big randbits(int n) {Big z; bigbits(n,z.fn); return z;} Big strong_rand(csprng *rng,const Big& b) {Big z; strong_bigrand(rng,b.fn,z.fn); return z;} Big strong_rand(csprng *rng,int n,int b) {Big z; strong_bigdig(rng,n,b,z.fn); return z;} #endif Big nextprime(const Big& b) {Big z; nxprime(b.fn,z.fn); return z;} Big nextsafeprime(int type,int subset,const Big& b) {Big z; nxsafeprime(type,subset,b.fn,z.fn); return z; } Big trial_divide(const Big& b) {Big r; trial_division(b.fn,r.fn); return r;} BOOL small_factors(const Big& b) {if (trial_division(b.fn,b.fn)==0) return TRUE; return FALSE;} BOOL perfect_power(const Big& b) {int i; miracl *mip=get_mip(); if (size(b.fn)<4) return FALSE; for (i=2;;i++) { if (nroot(b.fn,i,mip->w8)) return TRUE; if (size(mip->w8)<=1) break; } return FALSE; } Big sqrt(const Big& x,const Big& p) {Big z; sqroot(x.fn,p.fn,z.fn); return z;} void modulo(const Big& n) {prepare_monty(n.fn);} Big get_modulus() {Big m; miracl *mip=get_mip(); copy(mip->modulus,m.fn); return m;} Big nres(const Big& b) {Big z; nres(b.fn,z.fn); return z;} Big redc(const Big& b) {Big z; redc(b.fn,z.fn);return z;} /* Big nres_negate(const Big& b) { Big z; nres_negate(b.fn,z.fn); return z;} Big nres_modmult(const Big& b1,const Big& b2) { Big z; nres_modmult(b1.fn,b2.fn,z.fn); return z;} Big nres_premult(const Big& b1,int i) { Big z; nres_premult(b1.fn,i,z.fn); return z;} Big nres_modadd(const Big& b1,const Big& b2) { Big z; nres_modadd(b1.fn,b2.fn,z.fn); return z;} Big nres_modsub(const Big& b1,const Big& b2) { Big z; nres_modsub(b1.fn,b2.fn,z.fn); return z;} Big nres_moddiv(const Big& b1,const Big& b2) { Big z; nres_moddiv(b1.fn,b2.fn,z.fn); return z;} Big nres_pow(const Big& b1,const Big& b2) { Big z; nres_powmod(b1.fn,b2.fn,z.fn); return z;} Big nres_pow2(const Big& b1,const Big& b2,const Big& b3,const Big& b4) { Big z; nres_powmod2(b1.fn,b2.fn,b3.fn,b4.fn,z.fn); return z;} Big nres_pown(int n,Big *a,Big *b) { Big z; int i; big *x=(big *)mr_alloc(n,sizeof(big)); big *y=(big *)mr_alloc(n,sizeof(big)); for (i=0;ifn,z.fn); else nres_lucas(b1.fn,b2.fn,z.fn,z.fn); return z;} Big nres_sqrt(const Big& b) { Big z; nres_sqroot(b.fn,z.fn); return z;} */ Big shift(const Big&b,int n) { Big r; mr_shift(b.fn,n,r.fn); return r; } int length(const Big& b) { return mr_lent(b.fn); } /* Note that when inputting text as a number the CR is NOT * * included in the text, unlike C I/O which does include CR. */ #ifndef MR_NO_STANDARD_IO #ifndef MR_SIMPLE_IO istream& operator>>(istream& s, Big& x) { miracl *mip=get_mip(); #ifndef MR_SIMPLE_BASE if (mip->IOBASE>60) { s.sync(); s.getline(mip->IOBUFF,mip->IOBSIZ); } else #endif s >> mip->IOBUFF; if (s.eof() || s.bad()) { zero(x.fn); return s; } #ifdef MR_SIMPLE_BASE instr(x.fn,mip->IOBUFF); #else cinstr(x.fn,mip->IOBUFF); #endif return s; } #endif #endif // Note new parameter of window_size. Default to 5, but reduce to 4 (or even 3) to save RAM //int window(const Big& x,int i,int *nbs,int *nzs,int window_size) //{ /* returns sliding window value, max. of 5 bits, * * starting at i-th bit of big x. nbs is number of bits * * processed, nzs is the number of additional trailing * * zeros detected. Returns valid bit pattern 1x..x1 with * * no two adjacent 0's. So 10101 will return 21 with * * nbs=5, nzs=0. 11001 will return 3, with nbs=2, nzs=2, * * having stopped after the first 11.. */ // return mr_window(x.fn,i,nbs,nzs,window_size); //} //int naf_window(const Big& x,const Big& x3,int i,int *nbs,int *nzs,int store) //{ /* returns sliding window value, max of 5 bits * * starting at i-th bit of x. nbs is number of bits * * processed. nzs is number of additional trailing * * zeros detected. x and x3 (which is 3*x) are * * combined to produce the NAF (non-adjacent form) * * So if x=11011(27) and x3 is 1010001, the LSB is * * ignored and the value 100T0T (32-4-1=27) processed, * * where T is -1. Note x.P = (3x-x)/2.P. This value will * * return +7, with nbs=4 and nzs=1, having stopped after * * the first 4 bits. Note in an NAF non-zero elements * * are never side by side, so 10T10T won't happen */ // return mr_naf_window(x.fn,x3.fn,i,nbs,nzs,store); //} #ifndef MR_NO_ECC_MULTIADD void jsf(const Big& k0,const Big& k1,Big& u0p,Big& u0m,Big& u1p,Big& u1m) { mr_jsf(k0.fn,k1.fn,u0p.fn,u0m.fn,u1p.fn,u1m.fn); } #endif #ifndef MR_NO_STANDARD_IO ostream& operator<<(ostream& s, const Big& x) { miracl *mip=get_mip(); #if defined(MR_SIMPLE_BASE) || defined(MR_SIMPLE_IO) otstr(x.fn,mip->IOBUFF); #else cotstr(x.fn,mip->IOBUFF); #endif s << mip->IOBUFF; return s; } #ifdef MR_FLASH ostream& otfloat(ostream& s,const Big& m,int e) { miracl *mip=get_mip(); copy(m.fn,mip->w5); convert(1,mip->w6); copy(mip->w6,mip->w9); mr_shift(mip->w6,mr_lent(m.fn),mip->w6); mround(mip->w5,mip->w6,mip->w8); if (e>=-2 && e<=2) { if (e>0) { mr_shift(mip->w9,e,mip->w9); fmul(mip->w8,mip->w9,mip->w8); } else { mr_shift(mip->w9,-e,mip->w9); fdiv(mip->w8,mip->w9,mip->w8); } #if defined(MR_SIMPLE_BASE) || defined(MR_SIMPLE_IO) otstr(mip->w8,mip->IOBUFF); #else cotstr(mip->w8,mip->IOBUFF); #endif s << mip->IOBUFF; } else { #if defined(MR_SIMPLE_BASE) || defined(MR_SIMPLE_IO) otstr(mip->w8,mip->IOBUFF); #else cotstr(mip->w8,mip->IOBUFF); #endif s << mip->IOBUFF; s << ".2^" << e*MIRACL; } return s; } #endif #endif char* operator<<(char *s,const Big& x) { miracl *mip=get_mip(); int i,n; #if defined(MR_SIMPLE_BASE) || defined(MR_SIMPLE_IO) n=otstr(x.fn,mip->IOBUFF); #else n=cotstr(x.fn,mip->IOBUFF); #endif if (s!=mip->IOBUFF) for (i=0;i<=n;i++) s[i]=mip->IOBUFF[i]; return s; } void ecurve(const Big& a,const Big& b,const Big& p,int t) { ecurve_init(a.fn,b.fn,p.fn,t); } BOOL ecurve2(int m,int a,int b,int c,const Big& a2,const Big& a6,BOOL check,int t) { return ecurve2_init(m,a,b,c,a2.fn,a6.fn,check,t);}