/* * Digital Signature Standard (DSS) * * Elliptic Curve variation GF(2^m) - See Dr. Dobbs Journal, April 1997 * * This program asks for the name of a , computes its message digest, * signs it, and outputs the signature to a file .ecs. It is assumed * that curve parameters are available from a file common.ecs, as well as * the private key of the signer previously generated by the ecsgen program * * The curve is y^2+xy = x^3+Ax^2+B over GF(2^m) using a trinomial or * pentanomial basis (t^m+t^a+1 or t^m+t^a+t^b+t^c+1). These parameters * can be generated using the findbase.cpp example program, or taken from tables * provided, for example in IEEE-P1363 Annex A * * The file common2.ecs is presumed to exist and contain * {m,A,B,q,x,y,a,b,c} where A and B are parameters of the equation * above, (x,y) is an initial point on the curve, {m,a,b,c} are the field * parameters, (b is zero for a trinomial) and q is the order of the * (x,y) point, itself a large prime. The number of points on the curve is * cf.q where cf is the "co-factor", normally 2 or 4. * * Requires: big.cpp ec2.cpp */ #include #include #include #include "ec2.h" using namespace std; Miracl precision(200,256); void strip(char *name) { /* strip off filename extension */ int i; for (i=0;name[i]!='\0';i++) { if (name[i]!='.') continue; name[i]='\0'; break; } } static Big Hash(ifstream &fp) { /* compute hash function */ char ch,s[20]; Big h; sha sh; shs_init(&sh); forever { /* read in bytes from message file */ fp.get(ch); if (fp.eof()) break; shs_process(&sh,ch); } shs_hash(&sh,s); h=from_binary(20,s); return h; } int main() { ifstream common("common2.ecs"); /* construct file I/O streams */ ifstream private_key("private.ecs"); ifstream message; ofstream signature; char ifname[50],ofname[50]; EC2 G; Big a2,a6,q,x,y,h,r,s,d,k; long seed; int m,a,b,c; miracl *mip=&precision; /* randomise */ cout << "Enter 9 digit random number seed = "; cin >> seed; irand(seed); /* get common data */ common >> m; mip->IOBASE=16; common >> a2 >> a6 >> q >> x >> y; mip->IOBASE=10; common >> a >> b >> c; /* calculate r - this can be done off-line, and hence amortized to almost nothing */ ecurve2(m,a,b,c,a2,a6,FALSE,MR_PROJECTIVE); G=EC2(x,y); k=rand(q); G*=k; /* see ebrick2.cpp for technique to speed this up */ G.get(r); r%=q; /* get private key of recipient */ private_key >> d; /* get message */ cout << "file to be signed = " ; cin >> ifname; strcpy(ofname,ifname); strip(ofname); strcat(ofname,".ecs"); message.open(ifname,ios::binary|ios::in); if (!message) { cout << "Unable to open file " << ifname << "\n"; return 0; } h=Hash(message); /* calculate s */ k=inverse(k,q); s=((h+d*r)*k)%q; signature.open(ofname); mip->IOBASE=10; signature << r << endl; signature << s << endl; return 0; }