/* * Elliptic Curve Digital Signature Algorithm (ECDSA) * * * This program verifies the signature given to a in * .ecs generated by program ecsign * * The curve is y^2=x^3+Ax+B mod p * * The file common.ecs is presumed to exist, and to contain the domain * information {p,A,B,q,x,y}, where A and B are curve parameters, (x,y) are * a point of order q, p is the prime modulus, and q is the order of the * point (x,y). In fact normally q is the prime number of points counted * on the curve. * * Requires: big.cpp ecn.cpp * */ #include #include #include #include "ecn.h" using namespace std; #ifndef MR_NOFULLWIDTH Miracl precision(200,256); #else Miracl precision(50,MAXBASE); #endif void strip(char *name) { /* strip off filename extension */ int i; for (i=0;name[i]!='\0';i++) { if (name[i]!='.') continue; name[i]='\0'; break; } } static Big Hash(ifstream &fp) { /* compute hash function */ char ch,s[20]; Big h; sha sh; shs_init(&sh); forever { /* read in bytes from message file */ fp.get(ch); if (fp.eof()) break; shs_process(&sh,ch); } shs_hash(&sh,s); h=from_binary(20,s); return h; } int main() { ifstream common("common.ecs"); /* construct file I/O streams */ ifstream public_key("public.ecs"); ifstream message; ifstream signature; ECn G,Pub; int bits,ep; Big a,b,p,q,x,y,v,u1,u2,r,s,h; char ifname[50],ofname[50]; miracl *mip=&precision; /* get public data */ common >> bits; mip->IOBASE=16; common >> p >> a >> b >> q >> x >> y; mip->IOBASE=10; ecurve(a,b,p,MR_PROJECTIVE); G=ECn(x,y); /* get public key of signer */ public_key >> ep >> x; Pub=ECn(x,ep); // decompress /* get message */ cout << "signed file = " ; cin.sync(); cin.getline(ifname,13); strcpy(ofname,ifname); strip(ofname); strcat(ofname,".ecs"); message.open(ifname,ios::binary|ios::in); if (!message) { /* no message */ cout << "Unable to open file " << ifname << "\n"; return 0; } h=Hash(message); signature.open(ofname,ios::in); if (!signature) { /* no signature */ cout << "signature file " << ofname << " does not exist\n"; return 0; } signature >> r >> s; if (r>=q || s>=q) { cout << "Signature is NOT verified\n"; return 0; } s=inverse(s,q); u1=(h*s)%q; u2=(r*s)%q; G=mul(u2,Pub,u1,G); G.get(v); v%=q; if (v==r) cout << "Signature is verified\n"; else cout << "Signature is NOT verified\n"; return 0; }