// // Agrawal, Kayal & Saxena Prime Prover (Conjecture 4) // // cl /O2 /GX tp.cpp polymod.cpp poly.cpp zzn.cpp big.cpp miracl.lib // // Note neat way of assigning polynomials via the dummy type Variable // // No known pseudoprimes - so a useful test to confirm primality.. and its very quick // #include #include "big.h" #include "poly.h" #include "polymod.h" using namespace std; Miracl precision=100; // Code to parse formula in command line // This code isn't mine, but its public domain // Shamefully I forget the source // // NOTE: It may be necessary on some platforms to change the operators * and # #if defined(unix) #define TIMES '.' #define RAISE '^' #else #define TIMES '*' #define RAISE '#' #endif Big tt; static char *ss; void eval_power (Big& oldn,Big& n,char op) { if (op) n=pow(oldn,toint(n)); // power(oldn,size(n),n,n); } void eval_product (Big& oldn,Big& n,char op) { switch (op) { case TIMES: n*=oldn; break; case '/': n=oldn/n; break; case '%': n=oldn%n; } } void eval_sum (Big& oldn,Big& n,char op) { switch (op) { case '+': n+=oldn; break; case '-': n=oldn-n; } } void eval (void) { Big oldn[3]; Big n; int i; char oldop[3]; char op; char minus; for (i=0;i<3;i++) { oldop[i]=0; } LOOP: while (*ss==' ') ss++; if (*ss=='-') /* Unary minus */ { ss++; minus=1; } else minus=0; while (*ss==' ') ss++; if (*ss=='(' || *ss=='[' || *ss=='{') /* Number is subexpression */ { ss++; eval (); n=tt; } else /* Number is decimal value */ { for (i=0;ss[i]>='0' && ss[i]<='9';i++) ; if (!i) /* No digits found */ { cout << "Error - invalid number" << endl; exit (20); } op=ss[i]; ss[i]=0; n=atoi(ss); ss+=i; *ss=op; } if (minus) n=-n; do op=*ss++; while (op==' '); if (op==0 || op==')' || op==']' || op=='}') { eval_power (oldn[2],n,oldop[2]); eval_product (oldn[1],n,oldop[1]); eval_sum (oldn[0],n,oldop[0]); tt=n; return; } else { if (op==RAISE) { eval_power (oldn[2],n,oldop[2]); oldn[2]=n; oldop[2]=RAISE; } else { if (op==TIMES || op=='/' || op=='%') { eval_power (oldn[2],n,oldop[2]); oldop[2]=0; eval_product (oldn[1],n,oldop[1]); oldn[1]=n; oldop[1]=op; } else { if (op=='+' || op=='-') { eval_power (oldn[2],n,oldop[2]); oldop[2]=0; eval_product (oldn[1],n,oldop[1]); oldop[1]=0; eval_sum (oldn[0],n,oldop[0]); oldn[0]=n; oldop[0]=op; } else /* Error - invalid operator */ { cout << "Error - invalid operator" << endl; exit (20); } } } } goto LOOP; } int main(int argc,char **argv) { Big n; int i,ip,r,Base; BOOL gotN; miracl*mip=&precision; argc--; argv++; if (argc<1) { cout << "Incorrect Usage" << endl; cout << "Program tests number for primality" << endl; cout << "using AKS algorithm, conjecture 4" << endl; cout << "tp " << endl; cout << "OR" << endl; cout << "tp -f " << endl; #if defined(unix) cout << "e.g. tp -f 2^192-2^64-1" << endl; #else cout << "e.g. tp -f 2#192-2#64-1" << endl; #endif cout << "To input N in Hex, precede with -h" << endl; return 0; } ip=0; gotN=FALSE; gprime(10000); // Interpret command line Base=10; while (ipIOBASE=Base; n=argv[ip++]; mip->IOBASE=10; gotN=TRUE; continue; } cout << "Error in command line" << endl; return 0; } if (!gotN) { cout << "Error in command line" << endl; return 0; } if (n==2) { cout << "PRIME" << endl; return 0; } if (small_factors(n)) { cout << "COMPOSITE - has small factors" << endl; return 0; } if (perfect_power(n)) { cout << "COMPOSITE - is a perfect power" << endl; return 0; } for (i=0;;i++) { r=mip->PRIMES[i]; if ((n*n-1)%r!=0) break; } modulo(n); Variable x; Poly M=pow(x,r)-1; // M=x^r-1 setmod(M); PolyMod lhs,rhs; lhs=x-1; // left-hand side lhs=pow(lhs,n); // (x-1)^n mod M rhs=x; // right-hand side rhs=pow(rhs,n)-1; // x^n-1 mod M if (lhs==rhs) cout << "PRIME" << endl; else cout << "COMPOSITE" << endl; return 0; }