/* Scott's AKE Client/Server testbed See http://eprint.iacr.org/2002/164 Compile as cl /O2 /GX /DBIGS=18 ake2cpw.cpp zzn2.cpp big.cpp monty.cpp elliptic.cpp miracl.lib using COMBA build Cocks-Pinch curve - Weil pairing Requires file k2.ecs which contains details of non-supersingular elliptic curve, with order divisible by q=2^159+2^17+1, and security multiplier k=2. The prime p is 512 bits NOTE: Key exchange bandwidth could be reduced by halve using ideas from "Doing more with Fewer Bits", Brouwer, Pellikaan & Verheul, Asiacrypt '99 */ #include #include #include #include "ecn.h" #include "zzn.h" #include "zzn2.h" using namespace std; Miracl precision(34,0); // Using SHA-512 as basic hash algorithm #define HASH_LEN 64 // // Weil Pairing Code // // // Extract ECn point in internal ZZn format // void extract(ECn& A,ZZn& x,ZZn& y) { x=(A.get_point())->X; y=(A.get_point())->Y; } ZZn2 g(ECn& A,ECn& B,ECn& C,ECn& D,ECn& P,ECn& Q) { ZZn x,y,Ax,Ay,Cx,Cy,lam1,lam2; ZZn2 u,w; big ptr1,ptr2; extract(A,Ax,Ay); extract(C,Cx,Cy); double_add(B,A,D,C,ptr1,ptr2); // adds B to A and D to C // uses Montgomery's trick // returns line slopes in ptr1 and ptr2 if (A.iszero() || C.iszero()) return (ZZn2)1; if (ptr1==NULL || ptr2==NULL) return (ZZn2)0; // // Recall that Q and C are "really" of the form [(-x,0),(0,y)] // The slope of the real curve is -i*slope of the twist // [(iQy-Ay) - m1(-Qx-Ax)]/(Py-iCy)+i.m2(Px+Cx) // Instead of division, calculate conjugate and multiply (remember Fermat!) // lam1=ptr1; lam2=ptr2; extract(Q,x,y); Ax+=x; // numerator Ax*=lam1; u.set(Ax-Ay,y); extract(P,x,y); Cx+=x; // denominator Cx*=lam2; w.set(y,Cy-Cx); // conjugate trick ! // and don't forget the -i on the slope! return (w*u); } // // New Weil Pairing - note denominator elimination has been applied // // nw(P,Q) = [m(P,Q)/m(Q,P)]^(p-1) // // P(x,y) is a point of order q. Q(x,y) is a point of order q. // BOOL nw(ECn& P,ECn& Q,Big& q,ZZn& r) { ZZn2 m=1; int i,nb; ECn A=P; ECn B=Q; nb=bits(q); for (i=nb-2;i>=0;i--) { // one loop ! m*=m; m*=g(A,A,B,B,P,Q); if (bit(q,i)) m*=g(A,P,B,Q,P,Q); } m=conj(m)/m; // raise to power of (p-1) if (!A.iszero() || m.iszero()) return FALSE; if (m.isunity()) return FALSE; r=real(m); return TRUE; } // // Hash functions // Big H1(char *string) { // Hash a zero-terminated string to a number < modulus Big h,p; char s[HASH_LEN]; int i,j; sha512 sh; shs512_init(&sh); for (i=0;;i++) { if (string[i]==0) break; shs512_process(&sh,string[i]); } shs512_hash(&sh,s); p=get_modulus(); h=1; j=0; i=1; forever { h*=256; if (j==HASH_LEN) {h+=i++; j=0;} else h+=s[j++]; if (h>=p) break; } h%=p; return h; } Big H2(ZZn x) { // Hash an Fp to a big number sha sh; Big a,h,p; char s[20]; int m; shs_init(&sh); a=(Big)x; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } shs_hash(&sh,s); h=from_binary(20,s); return h; } // Hash and map a Client Identity to a curve point E_(Fp) ECn hash_and_map(char *ID,Big cof) { ECn Q; Big x0=H1(ID); while (!Q.set(x0)) x0+=1; Q*=cof; return Q; } /* Note that if #E(Fp) = p+1-t then #E(Fp2) = (p+1-t)(p+1+t) (a multiple of #E(Fp)) (Weil's Theorem) */ int main() { ifstream common("k2.ecs"); // elliptic curve parameters miracl* mip=&precision; ECn Alice,Bob,sA,sB; ECn B2,Server,sS; ZZn res,sp,ap,bp; Big t,r,a,b,s,ss,p,q,x,y,B,cof,cf,cf2; int bits,A; time_t seed; common >> bits; mip->IOBASE=16; common >> p; common >> A; common >> B; common >> cof; common >> q; t=p+1-cof*q; cf= (p+1-t)/q; // q divides p+1 (for k=2 condition) cf2=(p+1+t)/q; // and therefore also divides t (as it divides r) // this co-factor is in fact not needed.... time(&seed); irand((long)seed); mip->IOBASE=16; // hash Identities to curve point ss=rand(q); // TA's super-secret cout << "Mapping Server ID to point" << endl; ecurve(A,-B,p,MR_AFFINE); // twist curve Server=hash_and_map((char *)"Server",cf2); cout << "Mapping Alice & Bob ID's to points" << endl; ecurve(A,B,p,MR_AFFINE); Alice=hash_and_map((char *)"Alice",cf); Bob= hash_and_map((char *)"Robert",cf); // Alice, Bob are points of order q // Server does not need to be (its order is a multiple of q) cout << "Alice, Bob and the Server visit Trusted Authority" << endl; sS=ss*Server; sA=ss*Alice; sB=ss*Bob; cout << "Alice and Server Key exchange" << endl; a=rand(q); // Alice's random number s=rand(q); // Server's random number if (!nw(sA,Server,q,res)) cout << "Trouble" << endl; ap=powl(res,a); if (!nw(Alice,sS,q,res)) cout << "Trouble" << endl; sp=powl(res,s); cout << "Alice Key= " << H2(powl(sp,a)) << endl; cout << "Server Key= " << H2(powl(ap,s)) << endl; cout << "Bob and Server Key exchange" << endl; b=rand(q); // Bob's random number s=rand(q); // Server's random number if (!nw(sB,Server,q,res)) cout << "Trouble" << endl; bp=powl(res,b); if (!nw(Bob,sS,q,res)) cout << "Trouble" << endl; sp=powl(res,s); cout << "Bob's Key= " << H2(powl(sp,b)) << endl; cout << "Server Key= " << H2(powl(bp,s)) << endl; return 0; }