/* * Elliptic Curve Digital Signature Algorithm (ECDSA) * * * This program generates one set of public and private keys in files * public.ecs and private.ecs respectively. Notice that the public key * can be much shorter in this scheme, for the same security level. * * It is assumed that Curve parameters are to be found in file common.ecs * * The curve is y^2=x^3+Ax+B mod p * * The file common.ecs is presumed to exist, and to contain the domain * information {p,A,B,q,x,y}, where A and B are curve parameters, (x,y) are * a point of order q, p is the prime modulus, and q is the order of the * point (x,y). In fact normally q is the prime number of points counted * on the curve. * * Requires: big.cpp ecn.cpp */ #include #include #include "ecn.h" using namespace std; // if MR_STATIC defined, it should be 20 #ifndef MR_NOFULLWIDTH Miracl precision=20; #else Miracl precision(20,MAXBASE); #endif int main() { ifstream common("common.ecs"); /* construct file I/O streams */ ofstream public_key("public.ecs"); ofstream private_key("private.ecs"); int bits,ep; miracl *mip=&precision; ECn G,W; Big a,b,p,q,x,y,d; long seed; cout << "Enter 9 digit random number seed = "; cin >> seed; irand(seed); common >> bits; mip->IOBASE=16; common >> p >> a >> b >> q >> x >> y; mip->IOBASE=10; ecurve(a,b,p,MR_PROJECTIVE); if (!G.set(x,y)) { cout << "Problem - point (x,y) is not on the curve" << endl; return 0; } W=G; W*=q; if (!W.iszero()) { cout << "Problem - point (x,y) is not of order q" << endl; return 0; } /* generate public/private keys */ d=rand(q); // for (int i=0;i<=10000;i++) G*=d; ep=G.get(x); cout << "public key = " << ep << " " << x << endl; public_key << ep << " " << x << endl; private_key << d << endl; return 0; }