/*************************************************************************** * Copyright 2013 CertiVox UK Ltd. * * This file is part of CertiVox MIRACL Crypto SDK. * * The CertiVox MIRACL Crypto SDK provides developers with an * extensive and efficient set of cryptographic functions. * For further information about its features and functionalities please * refer to http://www.certivox.com * * * The CertiVox MIRACL Crypto SDK is free software: you can * redistribute it and/or modify it under the terms of the * GNU Affero General Public License as published by the * Free Software Foundation, either version 3 of the License, * or (at your option) any later version. * * * The CertiVox MIRACL Crypto SDK is distributed in the hope * that it will be useful, but WITHOUT ANY WARRANTY; without even the * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU Affero General Public License for more details. * * * You should have received a copy of the GNU Affero General Public * License along with CertiVox MIRACL Crypto SDK. * If not, see . * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial activities involving the CertiVox MIRACL Crypto SDK * without disclosing the source code of your own applications, or shipping * the CertiVox MIRACL Crypto SDK with a closed source product. * * ***************************************************************************/ /* * MIRACL Extended Greatest Common Divisor module. * mrxgcd.c */ #include "miracl.h" #ifdef MR_FP #include #endif #ifdef MR_COUNT_OPS extern int fpx; #endif #ifndef MR_USE_BINARY_XGCD #ifdef mr_dltype static mr_small qdiv(mr_large u,mr_large v) { /* fast division - small quotient expected. */ mr_large lq,x=u; #ifdef MR_FP mr_small dres; #endif x-=v; if (x=MAXBASE) return 0; return (mr_small)lq; } #else static mr_small qdiv(mr_small u,mr_small v) { /* fast division - small quotient expected */ mr_small x=u; x-=v; if (xERNUM) return 0; MR_IN(30) #ifdef MR_COUNT_OPS fpx++; #endif copy(x,mr_mip->w1); copy(y,mr_mip->w2); s=exsign(mr_mip->w1); insign(PLUS,mr_mip->w1); insign(PLUS,mr_mip->w2); convert(_MIPP_ 1,mr_mip->w3); zero(mr_mip->w4); last=FALSE; a=b=c=d=0; iter=0; while (size(mr_mip->w2)!=0) { if (b==0) { /* update mr_mip->w1 and mr_mip->w2 */ divide(_MIPP_ mr_mip->w1,mr_mip->w2,mr_mip->w5); t=mr_mip->w1,mr_mip->w1=mr_mip->w2,mr_mip->w2=t; /* swap(mr_mip->w1,mr_mip->w2) */ multiply(_MIPP_ mr_mip->w4,mr_mip->w5,mr_mip->w0); add(_MIPP_ mr_mip->w3,mr_mip->w0,mr_mip->w3); t=mr_mip->w3,mr_mip->w3=mr_mip->w4,mr_mip->w4=t; /* swap(xd,yd) */ iter++; } else { /* printf("a= %I64u b= %I64u c= %I64u d= %I64u \n",a,b,c,d); */ mr_pmul(_MIPP_ mr_mip->w1,c,mr_mip->w5); /* c*w1 */ mr_pmul(_MIPP_ mr_mip->w1,a,mr_mip->w1); /* a*w1 */ mr_pmul(_MIPP_ mr_mip->w2,b,mr_mip->w0); /* b*w2 */ mr_pmul(_MIPP_ mr_mip->w2,d,mr_mip->w2); /* d*w2 */ if (!dplus) { mr_psub(_MIPP_ mr_mip->w0,mr_mip->w1,mr_mip->w1); /* b*w2-a*w1 */ mr_psub(_MIPP_ mr_mip->w5,mr_mip->w2,mr_mip->w2); /* c*w1-d*w2 */ } else { mr_psub(_MIPP_ mr_mip->w1,mr_mip->w0,mr_mip->w1); /* a*w1-b*w2 */ mr_psub(_MIPP_ mr_mip->w2,mr_mip->w5,mr_mip->w2); /* d*w2-c*w1 */ } mr_pmul(_MIPP_ mr_mip->w3,c,mr_mip->w5); mr_pmul(_MIPP_ mr_mip->w3,a,mr_mip->w3); mr_pmul(_MIPP_ mr_mip->w4,b,mr_mip->w0); mr_pmul(_MIPP_ mr_mip->w4,d,mr_mip->w4); if (a==0) copy(mr_mip->w0,mr_mip->w3); else mr_padd(_MIPP_ mr_mip->w3,mr_mip->w0,mr_mip->w3); mr_padd(_MIPP_ mr_mip->w4,mr_mip->w5,mr_mip->w4); } if (mr_mip->ERNUM || size(mr_mip->w2)==0) break; n=(int)mr_mip->w1->len; if (n==1) { last=TRUE; u=mr_mip->w1->w[0]; v=mr_mip->w2->w[0]; } else { m=mr_mip->w1->w[n-1]+1; #ifndef MR_SIMPLE_BASE if (mr_mip->base==0) { #endif #ifndef MR_NOFULLWIDTH #ifdef mr_dltype /* use double length type if available */ if (n>2 && m!=0) { /* squeeze out as much significance as possible */ uu.h[MR_TOP]=muldvm(mr_mip->w1->w[n-1],mr_mip->w1->w[n-2],m,&sr); uu.h[MR_BOT]=muldvm(sr,mr_mip->w1->w[n-3],m,&sr); vv.h[MR_TOP]=muldvm(mr_mip->w2->w[n-1],mr_mip->w2->w[n-2],m,&sr); vv.h[MR_BOT]=muldvm(sr,mr_mip->w2->w[n-3],m,&sr); } else { uu.h[MR_TOP]=mr_mip->w1->w[n-1]; uu.h[MR_BOT]=mr_mip->w1->w[n-2]; vv.h[MR_TOP]=mr_mip->w2->w[n-1]; vv.h[MR_BOT]=mr_mip->w2->w[n-2]; if (n==2) last=TRUE; } u=uu.d; v=vv.d; #else if (m==0) { u=mr_mip->w1->w[n-1]; v=mr_mip->w2->w[n-1]; } else { u=muldvm(mr_mip->w1->w[n-1],mr_mip->w1->w[n-2],m,&sr); v=muldvm(mr_mip->w2->w[n-1],mr_mip->w2->w[n-2],m,&sr); } #endif #endif #ifndef MR_SIMPLE_BASE } else { #ifdef mr_dltype if (n>2) { /* squeeze out as much significance as possible */ u=muldiv(mr_mip->w1->w[n-1],mr_mip->base,mr_mip->w1->w[n-2],m,&sr); u=u*mr_mip->base+muldiv(sr,mr_mip->base,mr_mip->w1->w[n-3],m,&sr); v=muldiv(mr_mip->w2->w[n-1],mr_mip->base,mr_mip->w2->w[n-2],m,&sr); v=v*mr_mip->base+muldiv(sr,mr_mip->base,mr_mip->w2->w[n-3],m,&sr); } else { u=(mr_large)mr_mip->base*mr_mip->w1->w[n-1]+mr_mip->w1->w[n-2]; v=(mr_large)mr_mip->base*mr_mip->w2->w[n-1]+mr_mip->w2->w[n-2]; last=TRUE; } #else u=muldiv(mr_mip->w1->w[n-1],mr_mip->base,mr_mip->w1->w[n-2],m,&sr); v=muldiv(mr_mip->w2->w[n-1],mr_mip->base,mr_mip->w2->w[n-2],m,&sr); #endif } #endif } dplus=TRUE; a=1; b=0; c=0; d=1; forever { /* work only with most significant piece */ if (last) { if (v==0) break; q=qdiv(u,v); if (q==0) break; } else { if (dplus) { if ((mr_small)(v-c)==0 || (mr_small)(v+d)==0) break; q=qdiv(u+a,v-c); if (q==0) break; if (q!=qdiv(u-b,v+d)) break; } else { if ((mr_small)(v+c)==0 || (mr_small)(v-d)==0) break; q=qdiv(u-a,v+c); if (q==0) break; if (q!=qdiv(u+b,v-d)) break; } } if (q==1) { if ((mr_small)(b+d) >= MAXBASE) break; r=a+c; a=c; c=r; r=b+d; b=d; d=r; lr=u-v; u=v; v=lr; } else { if (q>=MR_DIV(MAXBASE-b,d)) break; r=a+q*c; a=c; c=r; r=b+q*d; b=d; d=r; lr=u-q*v; u=v; v=lr; } iter++; dplus=!dplus; } iter%=2; } if (s==MINUS) iter++; if (iter%2==1) subtract(_MIPP_ y,mr_mip->w3,mr_mip->w3); if (xd!=yd) { negify(x,mr_mip->w2); mad(_MIPP_ mr_mip->w2,mr_mip->w3,mr_mip->w1,y,mr_mip->w4,mr_mip->w4); copy(mr_mip->w4,yd); } copy(mr_mip->w3,xd); if (z!=xd && z!=yd) copy(mr_mip->w1,z); MR_OUT return (size(mr_mip->w1)); } int invmodp(_MIPD_ big x,big y,big z) { #ifdef MR_OS_THREADS miracl *mr_mip=get_mip(); #endif int gcd; MR_IN(213); gcd=xgcd(_MIPP_ x,y,z,z,z); MR_OUT return gcd; } #else /* much smaller, much slower binary inversion algorithm */ /* fails silently if a is not co-prime to p */ /* experimental! At least 3 times slower than standard method.. */ int invmodp(_MIPD_ big a,big p,big z) { #ifdef MR_OS_THREADS miracl *mr_mip=get_mip(); #endif big u,v,x1,x2; MR_IN(213); u=mr_mip->w1; v=mr_mip->w2; x1=mr_mip->w3; x2=mr_mip->w4; copy(a,u); copy(p,v); convert(_MIPP_ 1,x1); zero(x2); while (size(u)!=1 && size(v)!=1) { while (remain(_MIPP_ u,2)==0) { subdiv(_MIPP_ u,2,u); if (remain(_MIPP_ x1,2)!=0) add(_MIPP_ x1,p,x1); subdiv(_MIPP_ x1,2,x1); } while (remain(_MIPP_ v,2)==0) { subdiv(_MIPP_ v,2,v); if (remain(_MIPP_ x2,2)!=0) add(_MIPP_ x2,p,x2); subdiv(_MIPP_ x2,2,x2); } if (mr_compare(u,v)>=0) { mr_psub(_MIPP_ u,v,u); subtract(_MIPP_ x1,x2,x1); } else { mr_psub(_MIPP_ v,u,v); subtract(_MIPP_ x2,x1,x2); } } if (size(u)==1) copy(x1,z); else copy(x2,z); if (size(z)<0) add(_MIPP_ z,p,z); MR_OUT return 1; /* note - no checking that gcd=1 */ } #endif #ifndef MR_STATIC /* Montgomery's method for multiple simultaneous modular inversions */ BOOL double_inverse(_MIPD_ big n,big x,big y,big w,big z) { #ifdef MR_OS_THREADS miracl *mr_mip=get_mip(); #endif MR_IN(146) mad(_MIPP_ x,w,w,n,n,mr_mip->w6); if (size(mr_mip->w6)==0) { mr_berror(_MIPP_ MR_ERR_DIV_BY_ZERO); MR_OUT return FALSE; } invmodp(_MIPP_ mr_mip->w6,n,mr_mip->w6); mad(_MIPP_ w,mr_mip->w6,w,n,n,y); mad(_MIPP_ x,mr_mip->w6,x,n,n,z); MR_OUT return TRUE; } BOOL multi_inverse(_MIPD_ int m,big *x,big n,big *w) { /* find w[i]=1/x[i] mod n, for i=0 to m-1 * * x and w MUST be distinct */ int i; #ifdef MR_OS_THREADS miracl *mr_mip=get_mip(); #endif if (m==0) return TRUE; if (m<0) return FALSE; MR_IN(25) if (x==w) { mr_berror(_MIPP_ MR_ERR_BAD_PARAMETERS); MR_OUT return FALSE; } if (m==1) { invmodp(_MIPP_ x[0],n,w[0]); MR_OUT return TRUE; } convert(_MIPP_ 1,w[0]); copy(x[0],w[1]); for (i=2;iw6); /* y=x[0]*x[1]*x[2]....x[m-1] */ if (size(mr_mip->w6)==0) { mr_berror(_MIPP_ MR_ERR_DIV_BY_ZERO); MR_OUT return FALSE; } invmodp(_MIPP_ mr_mip->w6,n,mr_mip->w6); /* Now y=1/y */ copy(x[m-1],mr_mip->w5); mad(_MIPP_ w[m-1],mr_mip->w6,mr_mip->w6,n,n,w[m-1]); for (i=m-2;;i--) { if (i==0) { mad(_MIPP_ mr_mip->w5,mr_mip->w6,mr_mip->w6,n,n,w[0]); break; } mad(_MIPP_ w[i],mr_mip->w5,w[i],n,n,w[i]); mad(_MIPP_ w[i],mr_mip->w6,w[i],n,n,w[i]); mad(_MIPP_ mr_mip->w5,x[i],x[i],n,n,mr_mip->w5); } MR_OUT return TRUE; } #endif