/* * Program to factor big numbers using Pollards (p-1) method. * Works when for some prime divisor p of n, p-1 has itself * only small factors. * See "Speeding the Pollard and Elliptic Curve Methods" * by Peter Montgomery, Math. Comp. Vol. 48 Jan. 1987 pp243-264 * */ #include #include #include "miracl.h" #define LIMIT1 10000 /* must be int, and > MULT/2 */ #define LIMIT2 1000000L /* may be long */ #define MULT 2310 /* must be int, product of small primes 2.3.. */ #define NEXT 13 /* next small prime */ miracl *mip; static BOOL plus[1+MULT/2],minus[1+MULT/2]; void marks(long start) { /* mark non-primes in this interval. Note * * that those < NEXT are dealt with already */ int i,pr,j,k; for (j=1;j<=MULT/2;j+=2) plus[j]=minus[j]=TRUE; for (i=0;;i++) { /* mark in both directions */ pr=mip->PRIMES[i]; if (prstart) break; k=pr-start%pr; for (j=k;j<=MULT/2;j+=pr) plus[j]=FALSE; k=start%pr; for (j=k;j<=MULT/2;j+=pr) minus[j]=FALSE; } } int main() { /* factoring program using Pollards (p-1) method */ long i,p,pa,interval; big n,t,b,bw,bvw,bd,bp,q; static big bu[1+MULT/2]; static BOOL cp[1+MULT/2]; int phase,m,pos,btch,iv; mip=mirsys(30,0); n=mirvar(0); t=mirvar(0); b=mirvar(0); q=mirvar(0); bw=mirvar(0); bvw=mirvar(0); bd=mirvar(0); bp=mirvar(0); gprime(LIMIT1); for (m=1;m<=MULT/2;m+=2) if (igcd(MULT,m)==1) { bu[m]=mirvar(0); cp[m]=TRUE; } else cp[m]=FALSE; printf("input number to be factored\n"); cinnum(n,stdin); if (isprime(n)) { printf("this number is prime!\n"); return 0; } phase=1; p=0; btch=50; i=0; convert(2,b); /* if "degenerate case" comes up (see below) try 3 */ printf("phase 1 - trying all primes less than %d\n",LIMIT1); printf("prime= %8ld",p); forever { if (phase==1) { /* looking for all factors of (p-1) < LIMIT1 */ p=mip->PRIMES[i]; if (mip->PRIMES[i+1]==0) { phase=2; printf("\nphase 2 - trying last prime less than %ld\n" ,LIMIT2); printf("prime= %8ld",p); power(b,8,n,bw); convert(1,t); copy(b,bp); copy(b,bu[1]); for (m=3;m<=MULT/2;m+=2) { /* store bu[m] = b^(m*m) */ mad(t,bw,bw,n,n,t); mad(bp,t,t,n,n,bp); if (cp[m]) copy(bp,bu[m]); } power(b,MULT,n,t); power(t,MULT,n,t); mad(t,t,t,n,n,bd); /* bd=b^(2*MULT*MULT) */ iv=(int)(p/MULT); if (p%MULT>MULT/2) iv++; interval=(long)iv*MULT; p=interval+1; marks(interval); power(t,2*iv-1,n,bw); power(t,iv,n,bvw); power(bvw,iv,n,bvw); /* bvw = b^(MULT*MULT*iv*iv) */ subtract(bvw,bu[p%MULT],q); btch*=100; i++; continue; } pa=p; while ((LIMIT1/p) > pa) pa*=p; power(b,(int)pa,n,b); decr(b,1,q); } else { /* looking for last prime factor of (p-1) < LIMIT2 */ p+=2; pos=(int)(p%MULT); if (pos>MULT/2) { /* increment giant step */ iv++; interval=(long)iv*MULT; p=interval+1; marks(interval); pos=1; mad(bw,bd,bd,n,n,bw); mad(bvw,bw,bw,n,n,bvw); } if (!cp[pos]) continue; /* if neither interval+/-pos is prime, don't bother */ if (!plus[pos] && !minus[pos]) continue; subtract(bvw,bu[pos],t); mad(q,t,t,n,n,q); /* batching gcds */ } if (i++%btch==0) { /* try for a solution */ printf("\b\b\b\b\b\b\b\b%8ld",p); fflush(stdout); egcd(q,n,t); if (size(t)==1) { if (p>LIMIT2) break; else continue; } if (mr_compare(t,n)==0) { printf("\ndegenerate case"); break; } printf("\nfactors are\n"); if (isprime(t)) printf("prime factor "); else printf("composite factor "); cotnum(t,stdout); divide(n,t,n); if (isprime(n)) printf("prime factor "); else printf("composite factor "); cotnum(n,stdout); return 0; } } printf("\nfailed to factor\n"); return 0; }