/* * Program to factor big numbers using Pollards (p-1) method. * Works when for some prime divisor p of n, p-1 has only * small factors. * See "Speeding the Pollard and Elliptic Curve Methods" * by Peter Montgomery, Math. Comp. Vol. 48 Jan. 1987 pp243-264 * * Requires: big.cpp zzn.cpp */ #include #include #include "zzn.h" using namespace std; #define LIMIT1 10000 /* must be int, and > MULT/2 */ #define LIMIT2 2000000L /* may be long */ #define MULT 2310 /* must be int, product of small primes 2.3.. */ #define NEXT 13 /* next small prime */ Miracl precision=50; /* number of ints per ZZn */ miracl *mip; static long p; static int iv; static ZZn b,bw,bvw,bd,q,bu[1+MULT/2]; static BOOL cp[1+MULT/2],Plus[1+MULT/2],Minus[1+MULT/2]; void marks(long start) { /* mark non-primes in this interval. Note * * that those < NEXT are dealt with already */ int i,pr,j,k; for (j=1;j<=MULT/2;j+=2) Plus[j]=Minus[j]=TRUE; for (i=0;;i++) { /* mark in both directions */ pr=mip->PRIMES[i]; if (prstart) break; k=pr-start%pr; for (j=k;j<=MULT/2;j+=pr) Plus[j]=FALSE; k=start%pr; for (j=k;j<=MULT/2;j+=pr) Minus[j]=FALSE; } } void next_phase() { /* now changing gear */ ZZn bp,t; long interval; bw=pow(b,8); t=1; bp=bu[1]=b; for (int m=3;m<=MULT/2;m+=2) { /* store bu[m] = b^(m*m) */ t*=bw; bp*=t; if (cp[m]) bu[m]=bp; } t=pow(b,MULT); t=pow(t,MULT); bd=t*t; /* bd = b^(2*MULT*MULT) */ iv=p/MULT; if (p%MULT>MULT/2) iv++; interval=(long)iv*MULT; p=interval+1; marks(interval); bw=pow(t,(2*iv-1)); bvw=pow(t,iv); bvw=pow(bvw,iv); /* bvw = b^(MULT*MULT*iv*iv) */ q=bvw-bu[p%MULT]; } int giant_step() { /* increment giant step */ long interval; iv++; interval=(long)iv*MULT; p=interval+1; marks(interval); bw*=bd; bvw*=bw; return 1; } int main() { /* factoring program using Pollards (p-1) method */ int phase,m,pos,btch; long i,pa; Big n,t; mip=&precision; gprime(LIMIT1); for (m=1;m<=MULT/2;m+=2) if (igcd(MULT,m)==1) cp[m]=TRUE; else cp[m]=FALSE; cout << "input number to be factored\n"; cin >> n; if (prime(n)) { cout << "this number is prime!\n"; return 0; } modulo(n); /* do all arithmetic mod n */ phase=1; p=0; btch=50; i=0; b=2; cout << "phase 1 - trying all primes less than " << LIMIT1; cout << "\nprime= " << setw(8) << p; forever { /* main loop */ if (phase==1) { /* looking for all factors of (p-1) < LIMIT1 */ p=mip->PRIMES[i]; if (mip->PRIMES[i+1]==0) { phase=2; cout << "\nphase 2 - trying last prime less than "; cout << LIMIT2 << "\nprime= " << setw(8) << p; next_phase(); btch*=100; i++; continue; } pa=p; while ((LIMIT1/p) > pa) pa*=p; b=pow(b,(int)pa); /* b = b^pa mod n */ q=b-1; } else { /* looking for last prime factor of (p-1) < LIMIT2 */ p+=2; pos=p%MULT; if (pos>MULT/2) pos=giant_step(); /* if neither interval+/-pos is prime, don't bother */ if (!Plus[pos] && !Minus[pos]) continue; if (!cp[pos]) continue; q*=(bvw-bu[pos]); /* batch gcd's in q */ } if (i++%btch==0) { /* try for a solution */ cout << "\b\b\b\b\b\b\b\b" << setw(8) << p << flush; t=gcd((Big)q,n); if (t==1) { if (p>LIMIT2) break; else continue; } if (t==n) { cout << "\ndegenerate case"; break; } if (prime(t)) cout << "\nprime factor " << t; else cout << "\ncomposite factor " << t; n/=t; if (prime(n)) cout << "\nprime factor " << n; else cout << "\ncomposite factor " << n; cout << endl; return 0; } } cout << "\nfailed to factor\n"; return 0; }