/* Scott's AKE Client/Server testbed See http://eprint.iacr.org/2002/164 Compile as cl /O2 /GX /DZZNS=8 ake4sbt.cpp zzn4.cpp zzn2.cpp ecn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib Fastest using COMBA build for 256-bit mod-mul Scott-Barreto Curve - Tate pairing The file kw4.ecs is required Security is G160/F1024 (160-bit group, 1024-bit field) Modified to prevent sub-group confinement attack NOTE: assumes p = 3 mod 8, p is 256-bits **** NEW **** Based on the observation by R. Granger and D. Page and N.P. Smart in "High Security Pairing-Based Cryptography Revisited" that multi-exponentiation can be used for the final exponentiation of the Tate pairing, we suggest the Power Pairing, which calculates E(P,Q,e) = e(P,Q)^e, where the exponentiation by e is basically for free, as it can be folded into the multi-exponentiation. */ #include #include #include #include "ecn.h" #include #include "ecn2.h" #include "zzn4.h" using namespace std; Miracl precision(12,0); // Using SHA-1 as basic hash algorithm #define HASH_LEN 20 // // Define one or the other of these // // Which is faster depends on the I/M ratio - See imratio.c // Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE // #ifdef MR_AFFINE_ONLY #define AFFINE #else #define PROJECTIVE #endif // // Tate Pairing Code // // Extract ECn point in internal ZZn format // void extract(ECn& A,ZZn& x,ZZn& y) { x=(A.get_point())->X; y=(A.get_point())->Y; } #ifdef PROJECTIVE void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z) { big t; x=(A.get_point())->X; y=(A.get_point())->Y; t=(A.get_point())->Z; if (A.get_status()!=MR_EPOINT_GENERAL) z=1; else z=t; } #endif // // Line from A to destination C. Let A=(x,y) // Line Y-slope.X-c=0, through A, so intercept c=y-slope.x // Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0 // Now evaluate at Q -> return (Qy-y)-slope.(Qx-x) // ZZn4 line(ECn& A,ECn& C,ZZn& slope,ZZn2& Qx,ZZn2& Qy) { ZZn4 w; ZZn2 m=Qx; ZZn x,y,z,t; #ifdef AFFINE extract(A,x,y); m-=x; m*=slope; w.set((ZZn2)-y,Qy); w-=m; #endif #ifdef PROJECTIVE extract(A,x,y,z); x*=z; t=z; z*=z; z*=t; x*=slope; t=slope*z; m*=t; m-=x; t=z; extract(C,x,x,z); m+=(z*y); t*=z; w.set(m,-Qy*t); #endif return w; } // // Add A=A+B (or A=A+A) // Bump up num // ZZn4 g(ECn& A,ECn& B,ZZn2& Qx,ZZn2& Qy) { int type; ZZn lam; big ptr; ECn P=A; // Evaluate line from A type=A.add(B,&ptr); if (!type) return (ZZn4)1; lam=ptr; return line(P,A,lam,Qx,Qy); } // // Tate Pairing - note denominator elimination has been applied // // P is a point of order q. Q(x,y) is a point of order m.q. // Note that P is a point on the curve over Fp, Q(x,y) a point on the // extension field Fp^2 // // New! Power Pairing calculates E(P,Q,e) = e(P,Q)^e at no extra cost! // BOOL power_tate(ECn& P,ECn2 Q,Big& q,Big *cf,ZZn2 &Fr,Big &e,ZZn2& r) { int i,nb; ECn A; ZZn4 w,res,a[2]; ZZn2 Qx,Qy; Big carry,ex[2],p=get_modulus(); // ZZn4 Y,X; Q.get(Qx,Qy); // Qx=-tx(Qx)/2; // convert from twist to (x,0),(0,y) // Qy/=2; Qx=txd(Qx); Qy=txd(txd(Qy)); // cout << "Qx= " << Qx << endl; // cout << "Qy= " << Qy << endl; // X.set(Qx,(ZZn2)0); // Y.set((ZZn2)0,Qy); // cout << "Y^2= " << Y*Y << endl; // cout << "X^3+AX+B= " << X*X*X+getA()*X+getB() << endl; res=1; /* Left to right method */ A=P; nb=bits(q); for (i=nb-2;i>=0;i--) { res*=res; res*=g(A,A,Qx,Qy); if (bit(q,i)) res*=g(A,P,Qx,Qy); } if (!A.iszero() || res.iszero()) return FALSE; w=res; w.powq(Fr); w.powq(Fr); // ^(p^2-1) res=w/res; res.mark_as_unitary(); if (e.isone()) { ex[0]=cf[0]; ex[1]=cf[1]; } else { // cf *= e carry=mad(cf[1],e,(Big)0,p,ex[1]); mad(cf[0],e,carry,p,ex[0]); } a[0]=a[1]=res; a[0].powq(Fr); res=pow(2,a,ex); r=real(res); // compression if (r.isunity()) return FALSE; return TRUE; } // // Hash functions // Big H1(char *string) { // Hash a zero-terminated string to a number < modulus Big h,p; char s[HASH_LEN]; int i,j; sha sh; shs_init(&sh); for (i=0;;i++) { if (string[i]==0) break; shs_process(&sh,string[i]); } shs_hash(&sh,s); p=get_modulus(); h=1; j=0; i=1; forever { h*=256; if (j==HASH_LEN) {h+=i++; j=0;} else h+=s[j++]; if (h>=p) break; } h%=p; return h; } Big H2(ZZn2 x) { // Hash an Fp2 to a big number sha sh; Big a,u,v; char s[HASH_LEN]; int m; shs_init(&sh); x.get(u,v); a=u; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } a=v; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } shs_hash(&sh,s); a=from_binary(HASH_LEN,s); return a; } // Hash and map a Server Identity to a curve point E(Fp2) ECn2 hash2(char *ID) { ECn2 T; ZZn2 x; Big x0,y0=0; x0=H1(ID); do { x.set(x0,y0); x0+=1; } while (!is_on_curve(x)); T.set(x); // cout << "T= " << T << endl; return T; } // Hash and map a Client Identity to a curve point E(Fp) ECn hash_and_map(char *ID,Big cof) { ECn Q; Big x0=H1(ID); while (!is_on_curve(x0)) x0+=1; Q.set(x0); // Make sure its on E(F_p) Q*=cof; return Q; } ZZn2 get_frobenius_constant() { ZZn2 Fr; Big p=get_modulus(); switch (get_mip()->pmod8) { case 5: Fr.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2 break; case 3: // = (1+sqrt(-1))^(p-1)/2 case 7: // = (1+sqrt(-2))^(p-1)/2 Fr.set((Big)1,(Big)1); default: break; } return pow(Fr,(p-1)/2); } #define COF 58 int main() { ifstream common("kw4.ecs"); // elliptic curve parameters miracl* mip=&precision; ECn Alice,Bob,sA,sB; ECn2 Server,sS; ZZn2 res,sp,ap,bp,wa,wb,w1,w2; ZZn ww; ZZn4 w; ZZn2 Fr; Big a,b,s,ss,p,q,r,B,cof,t,qcof; Big cf[2]; // this is read-only // and never copied. int i,bitz,A; time_t seed; cout << "Started" << endl; common >> bitz; mip->IOBASE=16; common >> p; common >> A; common >> B; common >> cof; // #E/q common >> q; // low hamming weight q common >> cf[0]; // [(p^2+1)/q]/p common >> cf[1]; // [(p^2+1)/q]%p cout << "Initialised... " << p%8 << endl; cout << "cf= " << cf[0]*p+cf[1] << endl; // // Note: COF*q has a low hamming weight for this particular curve - so use this instead.. // qcof=q*COF; time(&seed); irand((long)seed); #ifdef AFFINE ecurve(A,B,p,MR_AFFINE); #endif #ifdef PROJECTIVE ecurve(A,B,p,MR_PROJECTIVE); #endif Fr=get_frobenius_constant(); // cout << "qnr= " << get_mip()->qnr << endl; mip->IOBASE=16; mip->TWIST=MR_QUADRATIC; // map Server to point on twisted curve E(Fp2) // hash Identities to curve point ss=rand(q); // TA's super-secret cout << "Mapping Server ID to point" << endl; Server=hash2((char *)"Server"); cout << "Mapping Alice & Bob ID's to points" << endl; Alice=hash_and_map((char *)"Alice",cof); Bob= hash_and_map((char *)"Robert",cof); cout << "Alice, Bob and the Server visit Trusted Authority" << endl; sS=ss*Server; sA=ss*Alice; sB=ss*Bob; cout << "Alice and Server Key Exchange" << endl; a=rand(q); // Alice's random number s=rand(q); // Server's random number if (!power_tate(sA,Server,qcof,cf,Fr,a,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn2)1) { cout << "res= " << res << endl; cout << "Wrong group order - aborting" << endl; exit(0); } // ap=powl(res,a); ap=res; if (!power_tate(Alice,sS,qcof,cf,Fr,s,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn2)1) { cout << "Wrong group order - aborting" << endl; exit(0); } // sp=powl(res,s); sp=res; cout << "Alice Key= " << H2(powl(sp,a)) << endl; cout << "Server Key= " << H2(powl(ap,s)) << endl; cout << "Bob and Server Key Exchange" << endl; b=rand(q); // Bob's random number s=rand(q); // Server's random number if (!power_tate(sB,Server,qcof,cf,Fr,b,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn2)1) { cout << "Wrong group order - aborting" << endl; exit(0); } // bp=powl(res,b); bp=res; if (!power_tate(Bob,sS,qcof,cf,Fr,s,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn2)1) { cout << "Wrong group order - aborting" << endl; exit(0); } // sp=powl(res,s); sp=res; cout << "Bob's Key= " << H2(powl(sp,b)) << endl; cout << "Server Key= " << H2(powl(bp,s)) << endl; return 0; }