/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see . *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
*
* kss_pair.cpp
*
* KSS curve, ate pairing embedding degree 18, ideal for security level AES-192
*
* Irreducible polynomial is of the form x^18+2
* Provides high level interface to pairing functions
*
* GT=pairing(G2,G1)
*
* This is calculated on a Pairing Friendly Curve (PFC), which must first be defined.
*
* G1 is a point over the base field, and G2 is a point over an extension field of degree 3
* GT is a finite field point over the 18-th extension, where 18 is the embedding degree.
*
*/
#define MR_PAIRING_KSS
#include "pairing_3.h"
// KSS curve parameters x,A,B
// irreducible poly is x^18+2
static char param[]= "15000000007004210";
static char curveB[]="2";
// Non-Residue. Irreducible Poly is binomial x^18-NR
#define NR -2
void read_only_error(void)
{
cout << "Attempt to write to read-only object" << endl;
exit(0);
}
// Note - this representation depends on p-1=12 mod 18
void set_frobenius_constant(ZZn &X)
{ // Note X=NR^[(p-13)/18];
Big p=get_modulus();
X=pow((ZZn)NR,(p-13)/18);
}
ZZn18 Frobenius(const ZZn18& W,ZZn& X,int n)
{
int i;
ZZn18 V=W;
for (i=0;i=p) break;
}
h%=p;
return h;
}
void PFC::start_hash(void)
{
shs256_init(&SH);
}
Big PFC::finish_hash_to_group(void)
{
Big hash;
char s[HASH_LEN];
shs256_hash(&SH,s);
hash=from_binary(HASH_LEN,s);
return hash%(*ord);
}
void PFC::add_to_hash(const GT& x)
{
ZZn6 u;
ZZn18 v=x.g;
ZZn3 h,l;
Big a;
ZZn xx[6];
int i,j,m;
v.get(u);
u.get(l,h);
l.get(xx[0],xx[1],xx[2]);
h.get(xx[3],xx[4],xx[5]);
for (i=0;i<6;i++)
{
a=(Big)xx[i];
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
}
void PFC::add_to_hash(const G2& x)
{
ZZn3 X,Y;
ECn3 v=x.g;
Big a;
ZZn xx[6];
int i,m;
v.get(X,Y);
X.get(xx[0],xx[1],xx[2]);
Y.get(xx[3],xx[4],xx[5]);
for (i=0;i<6;i++)
{
a=(Big)xx[i];
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
}
void PFC::add_to_hash(const G1& x)
{
Big a,X,Y;
int i,m;
x.g.get(X,Y);
a=X;
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
a=Y;
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
void PFC::add_to_hash(const Big& x)
{
int m;
Big a=x;
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
void PFC::add_to_hash(char *x)
{
int i=0;
while (x[i]!=0)
{
shs256_process(&SH,x[i]);
i++;
}
}
Big H2(ZZn18 x)
{ // Compress and hash an Fp18 to a big number
sha256 sh;
ZZn6 u;
ZZn3 h,l;
Big a,hash;
ZZn xx[6];
char s[HASH_LEN];
int i,j,m;
shs256_init(&sh);
x.get(u); // compress to single ZZn6
u.get(l,h);
l.get(xx[0],xx[1],xx[2]);
h.get(xx[3],xx[4],xx[5]);
for (i=0;i<6;i++)
{
a=(Big)xx[i];
while (a>0)
{
m=a%256;
shs256_process(&sh,m);
a/=256;
}
}
shs256_hash(&sh,s);
hash=from_binary(HASH_LEN,s);
return hash;
}
#ifndef MR_AFFINE_ONLY
void force(ZZn& x,ZZn& y,ZZn& z,ECn& A)
{ // A=(x,y,z)
copy(getbig(x),A.get_point()->X);
copy(getbig(y),A.get_point()->Y);
copy(getbig(z),A.get_point()->Z);
A.get_point()->marker=MR_EPOINT_GENERAL;
}
void extract(ECn &A, ZZn& x,ZZn& y,ZZn& z)
{ // (x,y,z) <- A
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
#endif
void force(ZZn& x,ZZn& y,ECn& A)
{ // A=(x,y)
copy(getbig(x),A.get_point()->X);
copy(getbig(y),A.get_point()->Y);
A.get_point()->marker=MR_EPOINT_NORMALIZED;
}
void extract(ECn& A,ZZn& x,ZZn& y)
{ // (x,y) <- A
if (A.iszero())
{
x=0; y=0;
return;
}
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
//
// This calculates p.A quickly using Frobenius
// 1. Extract A(x,y) from twisted curve to point on curve over full extension, as X=i^2.x and Y=i^3.y
// where i=NR^(1/k)
// 2. Using Frobenius calculate (X^p,Y^p)
// 3. map back to twisted curve
// Here we simplify things by doing whole calculation on the twisted curve
//
// Note we have to be careful as in detail it depends on w where p=w mod k
// In this case w=13
//
ECn3 psi(ECn3 &A,ZZn &W,int n)
{
int i;
ECn3 R;
ZZn3 X,Y;
ZZn FF;
// Fast multiplication of A by q^n
A.get(X,Y);
FF=NR*W*W;
for (i=0;isru;
}
R.set(X,Y);
return R;
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn18 line(ECn3& A,ECn3& C,ZZn3& slope,ZZn& Qx,ZZn& Qy)
{
ZZn18 w;
ZZn6 nn,dd;
ZZn3 X,Y;
A.get(X,Y);
nn.set(Qy,Y-slope*X);
dd.set(slope*Qx);
w.set(nn,dd);
//cout << "1. w= " << w << endl;
return w;
}
//
// Add A=A+B (or A=A+A)
// Return line function value
//
ZZn18 g(ECn3& A,ECn3& B,ZZn& Qx,ZZn& Qy)
{
ZZn3 lam;
ZZn18 r;
ECn3 P=A;
// Evaluate line from A
A.add(B,lam);
if (A.iszero()) return (ZZn18)1;
r=line(P,A,lam,Qx,Qy);
return r;
}
// if multiples of G2 can be precalculated, its a lot faster!
ZZn18 gp(ZZn3* ptable,int &j,ZZn& Px,ZZn& Py)
{
ZZn18 w;
ZZn6 nn,dd;
nn.set(Py,ptable[j+1]);
dd.set(ptable[j]*Px);
j+=2;
w.set(nn,dd);
//cout << "2. w= " << w << endl;
return w;
}
//
// Spill precomputation on pairing to byte array
//
int PFC::spill(G2& w,char *& bytes)
{
int i,j,len,m;
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
Big n;
Big X=*x;
ZZn a,b,c;
if (w.ptable==NULL) return 0;
n=X/7;
m=2*(bits(n)+ham(n)+1);
len=m*3*bytes_per_big;
bytes=new char[len];
for (i=j=0;inib-1);
Big n;
Big X=*x;
ZZn a,b,c;
if (w.ptable!=NULL) return;
n=X/7;
m=2*(bits(n)+ham(n)+1);
len=m*3*bytes_per_big;
w.ptable=new ZZn3[m];
for (i=j=0;i=0;i--)
{
Q=A;
// Evaluate line from A to A+B
A.add(A,lam);
Q.get(x1,y1);
w.ptable[j++]=lam; w.ptable[j++]=y1-lam*x1;
if (bit(n,i)==1)
{
Q=A;
A.add(B,lam);
Q.get(x1,y1);
w.ptable[j++]=lam; w.ptable[j++]=y1-lam*x1;
}
}
dA=A;
Q=A;
A.add(A,lam);
Q.get(x1,y1);
w.ptable[j++]=lam; w.ptable[j++]=y1-lam*x1;
m2A=A;
Q=A;
A.add(dA,lam);
Q.get(x1,y1);
w.ptable[j++]=lam; w.ptable[j++]=y1-lam*x1;
A=psi(A,*frob,6);
Q=A;
A.add(m2A,lam);
Q.get(x1,y1);
w.ptable[j++]=lam; w.ptable[j++]=y1-lam*x1;
return len;
}
GT PFC::multi_miller(int n,G2** QQ,G1** PP)
{
GT z;
ZZn *Px,*Py;
int i,j,*k,nb;
ECn3 *Q,*A,*A2;
ECn P;
ZZn18 res,rd;
Big m;
Big X=*x;
Px=new ZZn[n];
Py=new ZZn[n];
Q=new ECn3[n];
A=new ECn3[n];
A2=new ECn3[n];
k=new int[n];
m=X/7;
nb=bits(m);
res=1;
for (j=0;jg; normalise(P); Q[j]=QQ[j]->g;
extract(P,Px[j],Py[j]);
}
for (j=0;j=0;i--)
{
res*=res;
for (j=0;jptable==NULL)
res*=g(A[j],A[j],Px[j],Py[j]);
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
if (bit(m,i)==1)
for (j=0;jptable==NULL)
res*=g(A[j],Q[j],Px[j],Py[j]);
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
if (res.iszero()) return 0;
}
rd=res;
res*=res;
for (j=0;jptable==NULL)
{
Q[j]=A[j];
res*=g(A[j],A[j],Px[j],Py[j]);
}
else res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
rd*=res;
for (j=0;jptable==NULL)
{
A2[j]=A[j];
rd*=g(A[j],Q[j],Px[j],Py[j]);
}
else rd*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
res*=Frobenius(rd,*frob,6);
for (j=0;jptable==NULL)
{
A[j]=psi(A[j],*frob,6);
res*=g(A[j],A2[j],Px[j],Py[j]);
}
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
delete [] k;
delete [] A2;
delete [] A;
delete [] Q;
delete [] Py;
delete [] Px;
z.g=res;
return z;
}
//
// R-ate Pairing G2 x G1 -> GT
//
// P is a point of order q in G1. Q(x,y) is a point of order q in G2.
// Note that Q is a point on the sextic twist of the curve over Fp^3, P(x,y) is a point on the
// curve over the base field Fp
//
GT PFC::miller_loop(const G2& QQ,const G1& PP)
{
GT z;
Big n;
int i,j,nb,nbw,nzs;
ECn3 A,m2A,Q;
ECn P;
ZZn Px,Py;
BOOL precomp;
ZZn18 r,rd;
Big X=*x;
Q=QQ.g; P=PP.g;
precomp=FALSE;
if (QQ.ptable!=NULL) precomp=TRUE;
normalise(P);
extract(P,Px,Py);
A=Q;
n=(X/7);
nb=bits(n);
r=1; j=0;
r.mark_as_miller();
for (i=nb-2;i>=0;i--)
{
r*=r;
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else r*=g(A,A,Px,Py);
if (bit(n,i))
{
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else r*=g(A,Q,Px,Py);
}
}
rd=r;
r*=r;
Q=A;
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else r*=g(A,A,Px,Py);
rd*=r;
m2A=A;
if (precomp) rd*=gp(QQ.ptable,j,Px,Py);
else rd*=g(A,Q,Px,Py);
r*=Frobenius(rd,*frob,6);
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else
{
A=psi(A,*frob,6);
r*=g(A,m2A,Px,Py);
}
z.g=r;
return z;
}
// Automatically generated by Luis Dominquez
ZZn18 HardExpo(ZZn18 &f3x0, ZZn &X, Big &x){
//vector=[ 3, 5, 7, 14, 15, 21, 25, 35, 49, 54, 62, 70, 87, 98, 112, 245, 273, 319, 343, 434, 450, 581, 609, 784, 931, 1407, 1911, 4802, 6517 ]
ZZn18 xA;
ZZn18 xB;
ZZn18 t0;
ZZn18 t1;
ZZn18 t2;
ZZn18 t3;
ZZn18 t4;
ZZn18 t5;
ZZn18 t6;
ZZn18 t7;
ZZn18 f3x1;
ZZn18 f3x2;
ZZn18 f3x3;
ZZn18 f3x4;
ZZn18 f3x5;
ZZn18 f3x6;
ZZn18 f3x7;
f3x1=pow(f3x0,x);
f3x2=pow(f3x1,x);
f3x3=pow(f3x2,x);
f3x4=pow(f3x3,x);
f3x5=pow(f3x4,x);
f3x6=pow(f3x5,x);
f3x7=pow(f3x6,x);
xA=Frobenius(inverse(f3x1),X,2);
xB=Frobenius(inverse(f3x0),X,2);
t0=xA*xB;
xB=Frobenius(inverse(f3x2),X,2);
t1=t0*xB;
t0=t0*t0;
xB=Frobenius(inverse(f3x0),X,2);
t0=t0*xB;
xB=Frobenius(f3x1,X,1);
t0=t0*xB;
xA=Frobenius(inverse(f3x5),X,2)*Frobenius(f3x4,X,4)*Frobenius(f3x2,X,5);
//xB=Frobenius(f3x1,X,1);
t5=xA*xB;
t0=t0*t0;
t3=t0*t1;
xA=Frobenius(inverse(f3x4),X,2)*Frobenius(f3x1,X,5);
xB=Frobenius(f3x2,X,1);
t1=xA*xB;
xA=xB;//Frobenius(f3x2,X,1);
xB=xA; //xB=Frobenius(f3x2,X,1);
t0=xA*xB;
xB=Frobenius(f3x2,X,4);
t0=t0*xB;
xB=Frobenius(f3x1,X,4);
t2=t3*xB;
xB=Frobenius(inverse(f3x1),X,2);
t4=t3*xB;
t2=t2*t2;
xB=Frobenius(inverse(f3x2),X,3);
t3=t0*xB;
xB=inverse(f3x2);
t0=t3*xB;
t4=t3*t4;
xB=Frobenius(inverse(f3x3),X,3);
t0=t0*xB;
t3=t0*t2;
xB=Frobenius(inverse(f3x3),X,2)*Frobenius(f3x0,X,5);
t2=t3*xB;
t3=t3*t5;
t5=t3*t2;
xB=inverse(f3x3);
t2=t2*xB;
xA=Frobenius(inverse(f3x6),X,3);
//xB=inverse(f3x3);
t3=xA*xB;
t2=t2*t2;
t4=t2*t4;
xB=Frobenius(f3x3,X,1);
t2=t1*xB;
xA=xB; //xA=Frobenius(f3x3,X,1);
xB=Frobenius(inverse(f3x2),X,3);
t1=xA*xB;
t6=t2*t4;
xB=Frobenius(f3x4,X,1);
t4=t2*xB;
xB=Frobenius(f3x3,X,4);
t2=t6*xB;
xB=Frobenius(inverse(f3x5),X,3)*Frobenius(f3x5,X,4);
t7=t6*xB;
t4=t2*t4;
xB=Frobenius(f3x6,X,1);
t2=t2*xB;
t4=t4*t4;
t4=t4*t5;
xA=inverse(f3x4);
xB=Frobenius(inverse(f3x4),X,3);
t5=xA*xB;
// xB=Frobenius(inverse(f3x4),X,3);
t3=t3*xB;
xA=Frobenius(f3x5,X,1);
xB=xA; //xB=Frobenius(f3x5,X,1);
t6=xA*xB;
t7=t6*t7;
xB=Frobenius(f3x0,X,3);
t6=t5*xB;
t4=t6*t4;
xB=Frobenius(inverse(f3x7),X,3);
t6=t6*xB;
t0=t4*t0;
xB=Frobenius(f3x6,X,4);
t4=t4*xB;
t0=t0*t0;
xB=inverse(f3x5);
t0=t0*xB;
t1=t7*t1;
t4=t4*t7;
t1=t1*t1;
t2=t1*t2;
t1=t0*t3;
xB=Frobenius(inverse(f3x3),X,3);
t0=t1*xB;
t1=t1*t6;
t0=t0*t0;
t0=t0*t5;
xB=inverse(f3x6);
t2=t2*xB;
t2=t2*t2;
t2=t2*t4;
t0=t0*t0;
t0=t0*t3;
t1=t2*t1;
t0=t1*t0;
// xB=inverse(f3x6);
t1=t1*xB;
t0=t0*t0;
t0=t0*t2;
xB=f3x0*inverse(f3x7);
t0=t0*xB;
// xB=f3x0*inverse(f3x7);
t1=t1*xB;
t0=t0*t0;
t0=t0*t1;
return t0;
}
GT PFC::final_exp(const GT& z)
{
GT y;
ZZn18 rd,r=z.g;
rd=r;
Big X=*x;
// final exponentiation
r.conj();
r/=rd; // r^(p^9-1)
r.mark_as_regular(); // no longer "miller"
rd=r;
r.powq(*frob); r.powq(*frob); r.powq(*frob); r*=rd; //r^(p^3+1)
r.mark_as_unitary();
r=HardExpo(r,*frob,X);
y.g=r;
return y;
}
PFC::PFC(int s, csprng *rng)
{
int i,j,mod_bits,words;
if (s!=192)
{
cout << "No suitable curve available" << endl;
exit(0);
}
mod_bits=(8*s)/3;
if (mod_bits%MIRACL==0)
words=(mod_bits/MIRACL);
else
words=(mod_bits/MIRACL)+1;
#ifdef MR_SIMPLE_BASE
miracl *mip=mirsys((MIRACL/4)*words,16);
#else
miracl *mip=mirsys(words,0);
mip->IOBASE=16;
#endif
B=new Big;
x=new Big;
mod=new Big;
ord=new Big;
cof=new Big;
npoints=new Big;
trace=new Big;
for (i=0;i<6;i++)
{
WB[i]=new Big;
for (j=0;j<6;j++)
{
BB[i][j]=new Big;
}
}
for (i=0;i<2;i++)
{
W[i]=new Big;
for (j=0;j<2;j++)
{
SB[i][j]=new Big;
}
}
S=s;
Beta=new ZZn;
frob=new ZZn;
*B=curveB;
*x=param;
Big X=*x;
*trace=(pow(X,4) + 16*X + 7)/7;
*ord=(pow(X,6) + 37*pow(X,3) + 343)/343;
*cof=(49*X*X+245*X+343)/3;
*npoints=*cof*(*ord);
*mod=*cof*(*ord)+*trace-1;
ecurve(0,*B,*mod,MR_PROJECTIVE);
Big BBeta=(3*pow(X,7)-7*pow(X,6)+46*pow(X,5)+68*pow(X,4)-308*pow(X,3)+189*X*X+145*X-3192)/56;
BBeta+=X*(pow(X,7)/28);
BBeta/=3;
Big sru=*mod-BBeta; // sixth root of unity = -Beta
set_zzn3(NR,sru);
*Beta=BBeta;
set_frobenius_constant(*frob);
// Use standard Gallant-Lambert-Vanstone endomorphism method for G1
*W[0]=(X*X*X)/343; // This is first column of inverse of SB (without division by determinant)
*W[1]=(18*X*X*X+343)/343;
*SB[0][0]=(X*X*X)/343;
*SB[0][1]=-(18*X*X*X+343)/343;
*SB[1][0]=(19*X*X*X+343)/343;
*SB[1][1]=(X*X*X)/343;
// Use Galbraith & Scott Homomorphism idea for G2 & GT ... (http://eprint.iacr.org/2008/117.pdf)
*WB[0]=5*pow(X,3)/49+2; // This is first column of inverse of BB (without division by determinant)
*WB[1]=-(X*X)/49;
*WB[2]=pow(X,4)/49+3*X/7;
*WB[3]=-(17*pow(X,3)/343+1);
*WB[4]=-(pow(X,5)/343+2*(X*X)/49);
*WB[5]=5*pow(X,4)/343+2*X/7;
*BB[0][0]=1; *BB[0][1]=0; *BB[0][2]=5*X/7; *BB[0][3]=1; *BB[0][4]=0; *BB[0][5]=-X/7;
*BB[1][0]=-5*X/7; *BB[1][1]=-2; *BB[1][2]=0; *BB[1][3]=X/7; *BB[1][4]=1; *BB[1][5]=0;
*BB[2][0]=0; *BB[2][1]=2*X/7; *BB[2][2]=1; *BB[2][3]=0; *BB[2][4]=X/7; *BB[2][5]=0;
*BB[3][0]=1; *BB[3][1]=0; *BB[3][2]=X; *BB[3][3]=2; *BB[3][4]=0; *BB[3][5]=0;
*BB[4][0]=-X; *BB[4][1]=-3; *BB[4][2]=0; *BB[4][3]=0; *BB[4][4]=1; *BB[4][5]=0;
*BB[5][0]=0; *BB[5][1]=-X; *BB[5][2]=-3; *BB[5][3]=0; *BB[5][4]=0; *BB[5][5]=1;
mip->TWIST=MR_SEXTIC_D; // map Server to point on twisted curve E(Fp3)
RNG=rng;
}
PFC::~PFC()
{
int i,j;
delete B;
delete x;
delete mod;
delete ord;
delete cof;
delete npoints;
delete trace;
for (i=0;i<6;i++)
{
delete WB[i];
for (j=0;j<6;j++)
delete BB[i][j];
}
for (i=0;i<2;i++)
{
delete W[i];
for (j=0;j<2;j++)
delete SB[i][j];
}
delete Beta;
delete frob;
mirexit();
}
// GLV method
void glv(const Big &e,Big &r,Big *W[2],Big *B[2][2],Big u[2])
{
int i,j;
Big v[2],w;
for (i=0;i<2;i++)
{
v[i]=mad(*W[i],e,(Big)0,r,w);
u[i]=0;
}
u[0]=e;
for (i=0;i<2;i++)
for (j=0;j<2;j++)
u[i]-=v[j]*(*B[j][i]);
return;
}
// Use Galbraith & Scott Homomorphism idea ...
void galscott(const Big &e,Big &r,Big *WB[6],Big *B[6][6],Big u[6])
{
int i,j;
Big v[6],w;
for (i=0;i<6;i++)
{
v[i]=mad(*WB[i],e,(Big)0,r,w);
u[i]=0;
}
u[0]=e;
for (i=0;i<6;i++)
{
for (j=0;j<6;j++)
u[i]-=v[j]*(*B[j][i]);
}
return;
}
void endomorph(ECn &A,ZZn &Beta)
{ // apply endomorphism (x,y) = (Beta*x,y) where Beta is cube root of unity
ZZn x;
x=(A.get_point())->X;
x*=Beta;
copy(getbig(x),(A.get_point())->X);
}
G1 PFC::mult(const G1& w,const Big& k)
{
G1 z;
ECn Q;
if (w.mtable!=NULL)
{ // we have precomputed values
Big e=k;
if (k<0) e=-e;
int i,j,t=w.mtbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.mtable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g+=z.g;
if (j>0) z.g+=w.mtable[j];
}
if (k<0) z.g=-z.g;
}
else
{
Big u[2];
Q=w.g;
glv(k,*ord,W,SB,u);
endomorph(Q,*Beta);
Q=mul(u[0],w.g,u[1],Q);
z.g=Q;
}
return z;
}
// GLV + Galbraith-Scott
G2 PFC::mult(const G2& w,const Big& k)
{
G2 z;
int i;
if (w.mtable!=NULL)
{ // we have precomputed values
Big e=k;
if (k<0) e=-e;
int i,j,t=w.mtbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.mtable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g+=z.g;
if (j>0) z.g+=w.mtable[j];
}
if (k<0) z.g=-z.g;
}
else
{
ECn3 Q[6];
Big u[6];
BOOL small=TRUE;
galscott(k,*ord,WB,BB,u);
Q[0]=w.g;
for (i=1;i<6;i++)
{
if (u[i]!=0)
{
small=FALSE;
break;
}
}
if (small)
{
if (u[0]<0)
{
u[0]=-u[0];
Q[0]=-Q[0];
}
z.g=Q[0];
z.g*=u[0];
return z;
}
for (i=1;i<6;i++)
Q[i]=psi(Q[i-1],*frob,1);
// deal with -ve multipliers
for (i=0;i<6;i++)
{
if (u[i]<0)
{u[i]=-u[i];Q[i]=-Q[i];}
}
// simple multi-addition
z.g= mul(6,Q,u);
}
return z;
}
// GLV method + Galbraith-Scott idea
GT PFC::power(const GT& w,const Big& k)
{
GT z;
int i;
if (w.etable!=NULL)
{ // precomputation is available
Big e=k;
if (k<0) e=-e;
int i,j,t=w.etbits; // MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.etable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g*=z.g;
if (j>0) z.g*=w.etable[j];
}
if (k<0) z.g=inverse(z.g);
}
else
{
ZZn18 Y[6];
Big u[6];
galscott(k,*ord,WB,BB,u);
Y[0]=w.g;
for (i=1;i<6;i++)
{Y[i]=Y[i-1]; Y[i].powq(*frob);}
// deal with -ve exponents
for (i=0;i<6;i++)
{
if (u[i]<0)
{u[i]=-u[i];Y[i].conj();}
}
// simple multi-exponentiation
z.g= pow(6,Y,u);
}
return z;
}
// Faster Hashing to G2 - Fuentes-Castaneda, Knapp and Rodriguez-Henriquez
ECn3 HashG2(ECn3& Qx0,Big &x,ZZn&F)
{
ECn3 Qx0_;
ECn3 Qx1;
ECn3 Qx1_;
ECn3 Qx2;
ECn3 Qx2_;
ECn3 Qx3;
ECn3 t1;
ECn3 t2;
ECn3 t3;
ECn3 t4;
ECn3 t5;
ECn3 t6;
Qx0_=-Qx0;
Qx1=x*Qx0;
Qx1_=-Qx1;
Qx2=x*Qx1;
Qx2_=-Qx2;
Qx3=x*Qx2;
t1=Qx0;
t2=psi(Qx1_,F,2);
t3=Qx1+psi(Qx1,F,5);
t4=psi(Qx1,F,3)+psi(Qx2,F,1)+psi(Qx2_,F,2);
t5=psi(Qx0_,F,4);
t6=psi(Qx0,F,1)+psi(Qx0,F,3)+psi(Qx2_,F,4)+psi(Qx2,F,5)+psi(Qx3,F,1);
t2+=t1; // Olivos addition sequence
t1+=t1;
t1+=t3;
t1+=t2;
t4+=t2;
t5+=t1;
t4+=t1;
t5+=t4;
t4+=t6;
t5+=t5;
t5+=t4;
return t5;
}
// random group element
void PFC::random(Big& w)
{
if (RNG==NULL) w=rand(*ord);
else w=strong_rand(RNG,*ord);
}
// random AES key
void PFC::rankey(Big& k)
{
if (RNG==NULL) k=rand(S,2);
else k=strong_rand(RNG,S,2);
}
void PFC::hash_and_map(G2& w,char *ID)
{
int i;
ZZn3 XX;
Big X=*x;
Big x0=H1(ID);
forever
{
x0+=1;
XX.set((ZZn)0,(ZZn)x0,(ZZn)0);
if (!w.g.set(XX)) continue;
break;
}
w.g=HashG2(w.g,X,*frob);
}
void PFC::random(G2 &w)
{
int i;
ZZn3 XX;
Big X=*x;
Big x0;
if (RNG==NULL) x0=rand(*mod);
else x0=strong_rand(RNG,*mod);
forever
{
x0+=1;
XX.set((ZZn)0,(ZZn)x0,(ZZn)0);
if (!w.g.set(X)) continue;
break;
}
w.g=HashG2(w.g,X,*frob);
}
void PFC::hash_and_map(G1& w,char *ID)
{
Big x0=H1(ID);
while (!w.g.set(x0,x0)) x0+=1;
w.g*=*cof;
}
void PFC::random(G1& w)
{
Big x0;
if (RNG==NULL) x0=rand(*mod);
else x0=strong_rand(RNG,*mod);
while (!w.g.set(x0,x0)) x0+=1;
w.g*=*cof;
}
Big PFC::hash_to_aes_key(const GT& w)
{
Big m=pow((Big)2,S);
return H2(w.g)%m;
}
Big PFC::hash_to_group(char *ID)
{
Big m=H1(ID);
return m%(*ord);
}
GT operator*(const GT& x,const GT& y)
{
GT z=x;
z.g*=y.g;
return z;
}
GT operator/(const GT& x,const GT& y)
{
GT z=x;
z.g/=y.g;
return z;
}
//
// spill precomputation on GT to byte array
//
int GT::spill(char *& bytes)
{
int i,j,n=(1<nib-1);
int len=n*18*bytes_per_big+1;
ZZn6 a,b,c;
ZZn3 f,s;
ZZn x,y,z;
if (etable==NULL) return 0;
bytes=new char[len];
for (i=j=0;inib-1);
// int len=n*18*bytes_per_big;
ZZn6 a,b,c;
ZZn3 f,s;
ZZn x,y,z;
if (etable!=NULL) return;
etable=new ZZn18[1<nib-1);
int len=n*2*bytes_per_big+1;
Big x,y;
if (mtable==NULL) return 0;
bytes=new char[len];
for (i=j=0;inib-1);
// int len=n*2*bytes_per_big;
Big x,y;
if (mtable!=NULL) return;
mtable=new ECn[1<nib-1);
int len=n*6*bytes_per_big+1;
ZZn3 x,y;
ZZn a,b,c;
if (mtable==NULL) return 0;
bytes=new char[len];
for (i=j=0;inib-1);
// int len=n*6*bytes_per_big;
ZZn3 x,y;
ZZn a,b,c;
if (mtable!=NULL) return;
mtable=new ECn3[1<