/*************************************************************************** * Copyright 2013 CertiVox UK Ltd. * * This file is part of CertiVox MIRACL Crypto SDK. * * The CertiVox MIRACL Crypto SDK provides developers with an * extensive and efficient set of cryptographic functions. * For further information about its features and functionalities please * refer to http://www.certivox.com * * * The CertiVox MIRACL Crypto SDK is free software: you can * redistribute it and/or modify it under the terms of the * GNU Affero General Public License as published by the * Free Software Foundation, either version 3 of the License, * or (at your option) any later version. * * * The CertiVox MIRACL Crypto SDK is distributed in the hope * that it will be useful, but WITHOUT ANY WARRANTY; without even the * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU Affero General Public License for more details. * * * You should have received a copy of the GNU Affero General Public * License along with CertiVox MIRACL Crypto SDK. * If not, see . * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial activities involving the CertiVox MIRACL Crypto SDK * without disclosing the source code of your own applications, or shipping * the CertiVox MIRACL Crypto SDK with a closed source product. * * ***************************************************************************/ /* * MIRACL C++ Implementation file ZZn6a.cpp * * AUTHOR : M. Scott * * PURPOSE : Implementation of class ZZn6 (Arithmetic over n^6) * * WARNING: This class has been cobbled together for a specific use with * the MIRACL library. It is not complete, and may not work in other * applications * */ #include "zzn6a.h" using namespace std; // Frobenius X=x^p ZZn6& ZZn6::powq(const ZZn2& W) { BOOL ku=unitary; BOOL km=miller; a.conj(); b.conj(); c.conj(); b*=W; c*=(W*W); unitary=ku; miller=km; return *this; } void ZZn6::get(ZZn2& x,ZZn2& y,ZZn2& z) const {x=a; y=b; z=c;} void ZZn6::get(ZZn2& x) const {x=a; } void ZZn6::get1(ZZn2& x) const {x=b; } void ZZn6::get2(ZZn2& x) const {x=c; } ZZn6& ZZn6::operator*=(const ZZn6& x) { // optimized to reduce constructor/destructor calls if (&x==this) { ZZn2 A,B,C,D; if (unitary) { // Granger & Scott 2009 - only 3 squarings! BUT depends on p=5 mod 8, p=1 mod 3 A=a; a*=a; D=a; a+=a; a+=D; A.conj(); A+=A; a-=A; B=c; B*=B; B=txx(B); D=B; B+=B; B+=D; C=b; C*=C; D=C; C+=C; C+=D; b.conj(); b+=b; c.conj(); c+=c; c=-c; b+=B; c+=C; } else { // Chung-Hasan SQR2 if (!miller) { A=a; A*=A; B=b*c; B+=B; C=c; C*=C; D=a*b; D+=D; c+=(a+b); c*=c; a=A+txx(B); b=D+txx(C); c-=(A+B+C+D); } else { // Chung-Hasan SQR3 - calculates 2*W^2 A=a; A*=A; // a0^2 = S0 C=c; C*=b; C+=C; // 2a1.a2 = S3 D=c; D*=D; // a2^2 = S4 c+=a; // a0+a2 B=b; B+=c; B*=B; // (a0+a1+a2)^2 =S1 c-=b; c*=c; // (a0-a1+a2)^2 =S2 C+=C; A+=A; D+=D; a=A+txx(C); b=B-c-C+txx(D); c+=B-A-D; // is this code telling me something...? } } // Standard Chung-Hasan SQR3 // A=a; A*=a; // a0^2 = S0 // C=c; C*=b; C+=C; // 2a1.a2 = S3 // D=c; D*=D; // a2^2 = S4 // c+=a; // a0+a2 // B=b; B+=c; B*=B; // (a0+a1+a2)^2 =S1 // c-=b; c*=c; // (a0-a1+a2)^2 =S2 // c+=B; c/=2; // B-=c; B-=C; // c-=A; c-=D; // a=A+txx(C); // b=B+txx(D); } else { // Karatsuba ZZn2 Z0,Z1,Z2,Z3,Z4,T0,T1; Z0=a*x.a; Z2=b*x.b; Z4=c*x.c; T0=a+b; T1=x.a+x.b; Z1=T0*T1; Z1-=Z0; Z1-=Z2; T0=b+c; T1=x.b+x.c; Z3=T0*T1; Z3-=Z2; Z3-=Z4; T0=a+c; T1=x.a+x.c; T0*=T1; Z2+=T0; Z2-=Z0; Z2-=Z4; a=Z0+txx(Z3); b=Z1+txx(Z4); c=Z2; if (!x.unitary) unitary=FALSE; } return *this; } ZZn6& ZZn6::operator/=(const ZZn2& x) { *this*=inverse(x); unitary=FALSE; return *this; } ZZn6& ZZn6::operator/=(const ZZn& x) { ZZn t=(ZZn)1/x; a*=t; b*=t; c*=t; unitary=FALSE; return *this; } ZZn6& ZZn6::operator/=(int i) { ZZn t=(ZZn)1/i; a*=t; b*=t; c*=t; unitary=FALSE; return *this; } ZZn6& ZZn6::operator/=(const ZZn6& x) { *this*=inverse(x); if (!x.unitary) unitary=FALSE; return *this; } ZZn6 inverse(const ZZn6& w) { ZZn6 y; ZZn2 f0; if (w.unitary) { y=w; y.conj(); return y; } y.a=w.a*w.a-txx(w.b*w.c); y.b=txx(w.c*w.c)-w.a*w.b; y.c=w.b*w.b-w.a*w.c; f0=txx(w.b*y.c)+w.a*y.a+txx(w.c*y.b); f0=inverse(f0); y.c*=f0; y.b*=f0; y.a*=f0; return y; } ZZn6 operator+(const ZZn6& x,const ZZn6& y) {ZZn6 w=x; w.a+=y.a; w.b+=y.b; w.c+=y.c; return w; } ZZn6 operator+(const ZZn6& x,const ZZn2& y) {ZZn6 w=x; w.a+=y; return w; } ZZn6 operator+(const ZZn6& x,const ZZn& y) {ZZn6 w=x; w.a+=y; return w; } ZZn6 operator-(const ZZn6& x,const ZZn6& y) {ZZn6 w=x; w.a-=y.a; w.b-=y.b; w.c-=y.c; return w; } ZZn6 operator-(const ZZn6& x,const ZZn2& y) {ZZn6 w=x; w.a-=y; return w; } ZZn6 operator-(const ZZn6& x,const ZZn& y) {ZZn6 w=x; w.a-=y; return w; } ZZn6 operator-(const ZZn6& x) {ZZn6 w; w.a=-x.a; w.b=-x.b; w.c-=x.c; w.unitary=FALSE; return w; } ZZn6 operator*(const ZZn6& x,const ZZn6& y) { ZZn6 w=x; if (&x==&y) w*=w; else w*=y; return w; } ZZn6 operator*(const ZZn6& x,const ZZn2& y) {ZZn6 w=x; w*=y; return w;} ZZn6 operator*(const ZZn6& x,const ZZn& y) {ZZn6 w=x; w*=y; return w;} ZZn6 operator*(const ZZn2& y,const ZZn6& x) {ZZn6 w=x; w*=y; return w;} ZZn6 operator*(const ZZn& y,const ZZn6& x) {ZZn6 w=x; w*=y; return w;} ZZn6 operator*(const ZZn6& x,int y) {ZZn6 w=x; w*=y; return w;} ZZn6 operator*(int y,const ZZn6& x) {ZZn6 w=x; w*=y; return w;} ZZn6 operator/(const ZZn6& x,const ZZn6& y) {ZZn6 w=x; w/=y; return w;} ZZn6 operator/(const ZZn6& x,const ZZn2& y) {ZZn6 w=x; w/=y; return w;} ZZn6 operator/(const ZZn6& x,const ZZn& y) {ZZn6 w=x; w/=y; return w;} ZZn6 operator/(const ZZn6& x,int i) {ZZn6 w=x; w/=i; return w;} #ifndef MR_NO_RAND ZZn6 randn6(void) {ZZn6 w; w.a=randn2(); w.b=randn2(); w.c=randn2(); w.unitary=FALSE; return w;} #endif ZZn6 tx(const ZZn6& w) { ZZn6 u=w; ZZn2 t=u.a; u.a=txx(u.c); u.c=u.b; u.b=t; u.unitary=FALSE; return u; } ZZn6 conj(const ZZn6& x) { ZZn6 u=x; u.conj(); return u; } // x^a.y^b for unitary elements ZZn6 powu(const ZZn6& x,const Big& a,const ZZn6 &y,const Big &b) { ZZn6 X=x; ZZn6 Y=y; Big A=a; Big B=b; Big A3,B3; ZZn6 S,D,R; int e1,e2,h1,h2,nb,t; if (A<0) { A=-A; X=conj(X); } if (B<0) { B=-B; Y=conj(Y); } // joint sparse form jsf(A,B,A3,A,B3,B); S=X*Y; D=Y*conj(X); if (A3>B3) nb=bits(A3)-1; else nb=bits(B3)-1; R=1; while (nb>=0) { R*=R; e1=h1=e2=h2=0; t=0; if (bit(A,nb)) {e2=1; t+=8;} if (bit(A3,nb)) {h2=1; t+=4;} if (bit(B,nb)) {e1=1; t+=2;} if (bit(B3,nb)) {h1=1; t+=1;} if (t==1 || t==13) R*=Y; if (t==2 || t==14) R*=conj(Y); if (t==4 || t==7) R*=X; if (t==8 || t==11) R*=conj(X); if (t==5) R*=S; if (t==10) R*=conj(S); if (t==9) R*=D; if (t==6) R*=conj(D); nb-=1; } return R; } // ZZn6 powering of unitary elements ZZn6 powu(const ZZn6& x,const Big& k) { int i,j,nb,n,nbw,nzs; ZZn6 u,u2,t[11]; Big k3; if (k==0) return (ZZn6)one(); u=x; if (k==1) return u; // // Prepare table for windowing // k3=3*k; u2=(u*u); t[0]=u; for (i=1;i<=10;i++) t[i]=u2*t[i-1]; nb=bits(k3); for (i=nb-2;i>=1;) { n=naf_window(k,k3,i,&nbw,&nzs,11); for (j=0;j0) u*=t[n/2]; if (n<0) u*=conj(t[(-n)/2]); i-=nbw; if (nzs) { for (j=0;j1) for (i=nb-2;i>=0;i--) { u*=u; if (bit(e,i)) u*=x; } if (invert_it) u=inverse(u); return u; } /* ZZn6 pow(const ZZn6& x,const Big& k) { int i,j,nb,n,nbw,nzs; ZZn6 u,u2,t[16]; if (k==0) return (ZZn6)1; u=x; if (k==1) return u; // // Prepare table for windowing // u2=(u*u); t[0]=u; for (i=1;i<16;i++) t[i]=u2*t[i-1]; // Left to right method - with windows nb=bits(k); if (nb>1) for (i=nb-2;i>=0;) { n=window(k,i,&nbw,&nzs,5); for (j=0;j0) u*=t[n/2]; i-=nbw; if (nzs) { for (j=0;j=0;i--) { if (bit(k,i)) { w8*=w9; w8-=y; w9*=w9; w9-=two; } else { w9*=w8; w9-=y; w8*=w8; w8-=two; } } return (w8/2); } // double exponention - see Schoenmaker's method from Stam's thesis ZZn6 powl(const ZZn6& x,const Big& n,const ZZn6& y,const Big& m,const ZZn6& a) { ZZn6 A,B,C,T,two,vk,vl,va; int j,nb; two=(ZZn)2; vk=x+x; vl=y+y; va=a+a; nb=bits(n); if (bits(m)>nb) nb=bits(m); A=two; B=vk; C=vl; for (j=nb;j>=1;j--) { if (bit(n,j-1)==0 && bit(m,j-1)==0) { B*=A; B-=vk; C*=A; C-=vl; A*=A; A-=two; } if (bit(n,j-1)==1 && bit(m,j-1)==0) { A*=B; A-=vk; C*=B; C-=va; B*=B; B-=two; } if (bit(n,j-1)==0 && bit(m,j-1)==1) { A*=C; A-=vl; B*=C; B-=va; C*=C; C-=two; } if (bit(n,j-1)==1 && bit(m,j-1)==1) { T=B*C-va; B*=A; B-=vk; C*=A; C-=vl; A=T; T=A*vl-B; B=A*vk-C; C=T; } } return (A/2); } #ifndef MR_NO_STANDARD_IO ostream& operator<<(ostream& s,const ZZn6& xx) { ZZn6 b=xx; ZZn2 x,y,z; b.get(x,y,z); s << "[" << x << "," << y << "," << z << "]"; return s; } #endif