/*************************************************************************** * Copyright 2013 CertiVox UK Ltd. * * This file is part of CertiVox MIRACL Crypto SDK. * * The CertiVox MIRACL Crypto SDK provides developers with an * extensive and efficient set of cryptographic functions. * For further information about its features and functionalities please * refer to http://www.certivox.com * * * The CertiVox MIRACL Crypto SDK is free software: you can * redistribute it and/or modify it under the terms of the * GNU Affero General Public License as published by the * Free Software Foundation, either version 3 of the License, * or (at your option) any later version. * * * The CertiVox MIRACL Crypto SDK is distributed in the hope * that it will be useful, but WITHOUT ANY WARRANTY; without even the * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU Affero General Public License for more details. * * * You should have received a copy of the GNU Affero General Public * License along with CertiVox MIRACL Crypto SDK. * If not, see . * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial activities involving the CertiVox MIRACL Crypto SDK * without disclosing the source code of your own applications, or shipping * the CertiVox MIRACL Crypto SDK with a closed source product. * * ***************************************************************************/ /* * MIRACL C++ functions gf2m.cpp * * AUTHOR : M. Scott * * PURPOSE : Implementation of class GF2m * * NOTE: : Must be used in conjunction with big.h and big.cpp * */ #include "gf2m.h" GF2m square(const GF2m& b) {GF2m r=b; modsquare2(r.fn,r.fn); return r;} GF2m inverse(const GF2m& b) {GF2m r=b; inverse2(r.fn,r.fn); return r;} BOOL GF2m::iszero() const { if (size(fn)==0) return TRUE; else return FALSE; } BOOL GF2m::isone() const { if (size(fn)==1) return TRUE; else return FALSE; } BOOL modulo(int m,int a,int b,int c,BOOL check) {return prepare_basis(m,a,b,c,check);} GF2m& GF2m::operator/=(const GF2m& b) { GF2m z=b; inverse2(z.fn,z.fn); modmult2(fn,z.fn,fn); return *this;} #ifndef MR_NO_RAND GF2m random2(void) {GF2m z; rand2(z.fn); return z;} #endif GF2m operator+(const GF2m& b1,const GF2m& b2) {GF2m abb=b1; abb+=b2; return abb;} GF2m operator+(const GF2m& b1,int b2) {GF2m abb=b1; abb+=b2; return abb;} GF2m operator*(const GF2m& b1,const GF2m& b2) { GF2m abb=b1; if (&b1==&b2) abb*=abb; else abb*=b2; return abb; } GF2m operator/(const GF2m& b1,const GF2m& b2) {GF2m abb; inverse2(b2.fn,abb.fn); modmult2(b1.fn,abb.fn,abb.fn); return abb;} #ifndef MR_STATIC GF2m pow(const GF2m& b,int m) {GF2m z; power2(b.fn,m,z.fn); return z;} #endif GF2m sqrt(const GF2m& b) {GF2m z; sqroot2(b.fn,z.fn); return z;} GF2m halftrace(const GF2m& b) {GF2m z; halftrace2(b.fn,z.fn); return z;} GF2m quad(const GF2m& b) {GF2m z; if (!quad2(b.fn,z.fn)) zero(z.fn); return z;} GF2m gcd(const GF2m& b1,const GF2m& b2) {GF2m g; gcd2(b1.fn,b2.fn,g.fn); return g;} void kar2x2(const GF2m *x,const GF2m *y,GF2m *z) { z[0]=x[0]*y[0]; z[2]=x[1]*y[1]; z[1]=(x[0]+x[1])*(y[0]+y[1]); } void kar3x3(const GF2m *x,const GF2m *y,GF2m *z) { z[0]=x[0]*y[0]; z[2]=x[1]*y[1]; z[4]=x[2]*y[2]; z[1]= (x[0]+x[1])*(y[0]+y[1])+z[2]+z[0]; z[3]= (x[1]+x[2])*(y[1]+y[2])+z[2]+z[4]; z[2]+=(x[0]+x[2])*(y[0]+y[2])+z[0]+z[4]; }