* [What Is Miracl](../README.md) * [Security Advisory](../security-advisory.md) * [Benchmarks](../benchmarks.md) * [Miracl Standard Curves](../miracl-standard-curves.md) * [IEEE 1363](../ieee-1363.md) * [Elliptic Curves](../elliptic-curves.md) * [Licensing](../licensing.md) * Reference Manual * [Low Level Routines](low-level-routines.md) * [Advanced Arithmetic Routines](advanced-arithmetic-routines.md) * Montgomery Arithmetic Routines * [ZZn2 Arithmetic Routines](zzn2-arithmetic-routines.md) * [Encryption Routines](encryption-routines.md) * [Elliptic Curve Routines](elliptic-curve-routines.md) * [Floating Slash Routines](floating-slash-routines.md) * [Structure Reference](structure-reference.md) Montgomery Arithmetic Routines --- In these routines a big parameter can also be used wherever a flash is specified, but not vice versa. Further information may be gleaned from the (lightly) commented source code. An asterisk after the name indicates that the function does not take a mip parameter if MR_GENERIC_MT is defined in mirdef.h. ## void nres (big x, big y) Converts a big number to n-residue form. **Parameters:** ←x
→y the n-residue form of x **Precondition:** Must be preceded by call to prepare_monty() > See also: **redc** ## void nres_dotprod (int m, big * x, big * y, big w) Finds the dot product of two arrays of n-residues. So-called "lazy" reduction is used, in that the sum of products is only reduced once with respect to the Montgomery modulus. This is quicker---nearly twice as fast. **Parameters:** ←m
←x An array of m n-residues
←y An array of m n-residues
→w =Σxiyi (mod n), where n is the current Montgomery modulus **Precondition:** Must be preceded by call to prepare_monty(). ## void nres_double_modadd (big x, big y, big w) Adds two double length bigs modulo pR, where R = 2n and n is the smallest multiple of the word-length of the underlying MIRACL type, such that R > p. This is required for lazy reduction. **Parameters:** ←x
←y
→w = a + b (mod pR) ## void nres_double_modsub (big x, big y, big w) Subtracts two double length bigs modulo pR, where R = 2n and n is the smallest multiple of the wordlength of the underlying MIRACL type, such that R > p. This is required for lazy reduction. **Parameters:** ←x
←y
→w = a − b (mod pR) ## void nres_lazy (big a0, big a1, big b0, big b1, big r, big i) Uses the method of lazy reduction combined with Karatsuba's method to multiply two zzn2 variables. Requires just 3 multiplications and two modular reductions. **Parameters:** ←a0
←a1
←b0
←b1
→r = the "real part" of (a0 + a1i)(b0 + b1i)
→i = the "imaginary part" of (a0 + a1i)(b0 + b1i) ## void nres_lucas (big p, big r, big vp, big v) Modular Lucas exponentiation of an n-residue. **Parameters:** ←p An n-residue
←r A big exponent
→vp = Vr−1(p) (mod n) where n is the current Montgomery modulus
→v = Vr(p) (mod n) where n is the current Montgomery modulus > Only v is returned if v and vp are the same big variable. **Precondition:** Must be preceded by call to prepare_monty() and conversion of the first parameter to n-residue form. Note that the exponent is not converted to n-residue form > See also: **lucas** ## void nres_modadd (big x, big y, big w) Modular addition of two n-residues. **Parameters:** ←x
←y
→w = x + y (mod n), where n is the current Montgomery modulus **Precondition:** Must be preceded by a call to prepare_monty(). ## int nres_moddiv (big x, big y, big w) Modular division of two n-residues. **Parameters:** ←x
←y
→w = x/y (mod n), where n is the current Montgomery modulus **Returns:** GCD of y and n as an integer, if possible, or MR_TOOBIG. Should be 1 for a valid result **Precondition:** Must be preceded by call to prepare_monty() and conversion of parameters to n-residue form. Parameters x and y must be distinct. ## void nres_modmult (big x, big y, big w) Modular multiplication of two n-residues. Note that this routine will invoke a KCM Modular Multiplier if MR_KCM has been defined in mirdef.h and set to an appropriate size for the current modulus, or a Comba fixed size modular multiplier if MR_COMBA is defined as exactly the size of the modulus. **Parameters:** ←x
←y
→w = xy (mod n), where n is the current Montgomery modulus **Precondition:** Must be preceded by call to prepare_month() and conversion of parameters to n-residue form. ### void nres_modsub (big x, big y, big w) Modular subtraction of two n-residues. **Parameters:** ←x
←y
→w = x − y (mod n), where n is the current Montgomery modulus **Precondition:** Must be preceded by a call to prepare_monty(). ### BOOL nres_multi_inverse (int m, big * x, big * w) Finds the modular inverses of many numbers simultaneously, exploiting Montgomery's observation that x−1 = y(xy)−1, y−1 = x(xy)−1. This will be quicker, as modular inverses are slow to calculate, and this way only one is required. **Parameters:** ←m The number of inverses required
←x An array of m n-residues whose inverses are wanted
→w An array with the inverses of za x **Returns:** TRUE if successful, otherwise FALSE **Precondition:** The parameters x and w must be distinct. ### void nres_negate (big x, big w) Modular negation. **Parameters:** ←x An n-residue number
→w = −x (mod n), where n is the current Montgomery modulus **Precondition:** Must be preceded by a call to prepare_monty(). ### void nres_powltr (int x, big y, big w) Modular exponentiation of an n-residue. **Parameters:** ←x
←y
→w = xy (mod n), where n is the current Montgomery modulus **Precondition:** Must be preceded by call to prepare_monty(). Note that the small integer x and the exponent are not converted to n-residue form. ### void nres_powmod (big x, big y, big w) Modular exponentiation of an n-residue. **Parameters:** ←x An n-reside number, the base
←y A big number, the exponent
→w = xy (mod n), where n is the current Montgomery modulus **Precondition:** Must be preceded by call to prepare_monty() and conversion of the first parameter to n-residue form. Note that the exponent is not converted to n-residue form > See also: **nres_powltr, nres_powmod2** **Example:** ``` prepare_monty(n); ... nres(x, y); // convert to n-residue form nres_powmod(y, e, z); redc(z, w); // convert back to normal form ``` ### void nres_powmod2 (big x, big y, big a, big b, big w) Calculates the product of two modular exponentiations involving n-residues. **Parameters:** ←x An n-residue number
←y A big integer
←a An n-residue number
←b A big integer
→w = xy ab (mod n), where n is the current Montgomery modulus **Precondition:** Must be preceded by call to prepare_monty() and conversion of the appropriate parameters to n-residue form. Note that the exponents are not converted to n-residue form > See also: **nres_powltr, nres_powmod** ### void nres_powmodn (int n, big * x, big * y, big w) Calculates the product of n modular exponentiations involving n-residues. Extra memory is allocated internally by this function. **Parameters:** ←n The number of n-residue numbers
←x An array of n n-residue numbers
←y An array of n big integers
→w = x[0]y[0]x[1]y[1] · · · x[n − 1]y[n−1) (mod p), where p is the current Montgomery modulus **Precondition:** Must be preceded by call to prepare_monty() and conversion of the appropriate parameters to n-residue form. Note that the exponents are not converted to n-residue forms. ### void nres_premult (big x, int k, big w) Multiplies an n-residue by a small integer. **Parameters:** ←x
←k
→w = kx (mod n), where n is the current Montgomery modulus **Precondition:** Must be preceded by call to prepare_monty() and conversion of the first parameter to n-residue form. Note that the small integer is not converted to n-residue form > See also: **nres_modmult** ### BOOL nres_sqroot (big x, big w) Calculates the square root of an n-residue mod a prime modulus. **Parameters:** ←x
→w =x (mod n), where n is the current Montgomery modulus **Returns:** TRUE if the square root exists, otherwise FALSE **Precondition:** Must be preceded by call to prepare_monty() and conversion of the first parameter to n-residue form. ### mr_small prepare_monty (big n) Prepares a Montgomery modulus for use. Each call to this function replaces the previous modulus (if any). **Parameters:** ←n A big number which is to be the Montgomery modulus **Returns:** None **Precondition:** The parameter n must be positive and odd. Allocated memory is freed when the current instance of MIRACL is terminated by a call to mirexit(). ### void redc (big x, big y) Converts an n-residue back to normal form. **Parameters:** ←x an n-residue
→y the normal form of the n-residue x **Precondition:** Must be preceded by call to prepare_monty() > See also: **nres**