/* Scott's AKE Client/Server testbed See http://eprint.iacr.org/2002/164 Compile as cl /O2 /GX /DZZNS=8 ake4fsta.cpp zzn4.cpp zzn2.cpp ecn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib Fastest using COMBA build for 256-bit mod-mul Freeman-Scott-Teske Curve - Ate pairing The file nk4.ecs is required Security is G160/F1024 (160-bit group, 1024-bit field) Modified to prevent sub-group confinement attack NOTE: assumes p = 5 mod 8, p is 256-bits **** NEW **** Based on the observation by R. Granger and D. Page and N.P. Smart in "High Security Pairing-Based Cryptography Revisited" that multi-exponentiation can be used for the final exponentiation of the Tate pairing, we suggest the Power Pairing, which calculates E(P,Q,e) = e(P,Q)^e, where the exponentiation by e is basically for free, as it can be folded into the multi-exponentiation. **** NEW **** ATE pairing implementation - see The Eta Pairing revisited by Hess, Smart and Vercauteren */ #include #include #include #include "ecn.h" #include #include "ecn2.h" #include "zzn4.h" using namespace std; Miracl precision(16,0); // Using SHA-1 as basic hash algorithm #define HASH_LEN 20 // // Define one or the other of these // // Which is faster depends on the I/M ratio - See imratio.c // Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE // // This program works with AFFINE only.. #define AFFINE // // Ate Pairing Code // // Extract ECn point in internal ZZn format // void extract(ECn& A,ZZn& x,ZZn& y) { x=(A.get_point())->X; y=(A.get_point())->Y; } // // Get x/i^2, y/i^4, where i is 4th root of -2 // void untwist(ECn2& P,ZZn2& U,ZZn2& V) { P.get(U,V); U=-tx(U)/2; V=-V/2; } // // Line from A to destination C. Let A=(x,y) // Line Y-slope.X-c=0, through A, so intercept c=y-slope.x // Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0 // Now evaluate at Q -> return (Qy-y)-slope.(Qx-x) // ZZn4 line(ECn2& A,ZZn2& lam,ZZn& Qx,ZZn& Qy) { ZZn4 w; ZZn2 x,y,z,t; untwist(A,x,y); w.set(ZZn2(0,Qy),tx(y)-lam*(x-Qx)); return w; } // // Add A=A+B (or A=A+A) // Bump up num // ZZn4 g(ECn2& A,ECn2& B,ZZn& Qx,ZZn& Qy) { ZZn2 lam; ECn2 P=A; // Evaluate line from A A.add(B,lam); if (A.iszero()) return (ZZn4)1; //cout << "lam= " << lam << endl; return line(P,lam,Qx,Qy); } // // Ate Pairing - note denominator elimination has been applied // // P is a point of order q. Q(x,y) is a point of order m.q. // Note that P is a point on the curve over Fp, Q(x,y) a point on the // extension field Fp^2 // // New! Power Pairing calculates E(P,Q,e) = e(P,Q)^e at no extra cost! // BOOL power_pairing(ECn2& P,ECn Q,Big& T,Big *cf,ZZn2 &Fr,Big &e,Big q,ZZn2& r) { int i,nb; ECn2 A; ZZn4 w,res,a[2]; ZZn Qx,Qy; Big carry,ex[2],p=get_modulus(); extract(Q,Qx,Qy); res=1; /* Left to right method */ A=P; nb=bits(T); for (i=nb-2;i>=0;i--) { res*=res; res*=g(A,A,Qx,Qy); if (bit(T,i)) res*=g(A,P,Qx,Qy); } // if (!A.iszero() || res.iszero()) return FALSE; w=res; w.powq(Fr); w.powq(Fr); // ^(p^2-1) res=w/res; res.mark_as_unitary(); if (e.isone()) { ex[0]=cf[0]; ex[1]=cf[1]; } else { // cf *= e carry=mad(cf[1],e,(Big)0,p,ex[1]); mad(cf[0],e,carry,p,ex[0]); } a[0]=a[1]=res; a[0].powq(Fr); res=pow(2,a,ex); r=real(res); // compression if (r.isunity()) return FALSE; return TRUE; } // // Hash functions // Big H1(char *string) { // Hash a zero-terminated string to a number < modulus Big h,p; char s[HASH_LEN]; int i,j; sha sh; shs_init(&sh); for (i=0;;i++) { if (string[i]==0) break; shs_process(&sh,string[i]); } shs_hash(&sh,s); p=get_modulus(); h=1; j=0; i=1; forever { h*=256; if (j==HASH_LEN) {h+=i++; j=0;} else h+=s[j++]; if (h>=p) break; } h%=p; return h; } Big H2(ZZn2 x) { // Hash an Fp2 to a big number sha sh; Big a,u,v; char s[HASH_LEN]; int m; shs_init(&sh); x.get(u,v); a=u; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } a=v; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } shs_hash(&sh,s); a=from_binary(HASH_LEN,s); return a; } // Hash and map a Server Identity to a curve point E(Fp2) ECn2 hash2(char *ID,Big cof2) { ECn2 T; ZZn2 x; Big x0,y0=0; x0=H1(ID); do { x.set(x0,y0); x0+=1; } while (!is_on_curve(x)); T.set(x); T*=cof2; return T; } // Hash and map a Client Identity to a curve point E(Fp) ECn hash_and_map(char *ID,Big cof) { ECn Q; Big x0=H1(ID); while (!is_on_curve(x0)) x0+=1; Q.set(x0); // Make sure its on E(F_p) Q*=cof; return Q; } void set_frobenius_constant(ZZn2 &X) { Big p=get_modulus(); switch (get_mip()->pmod8) { case 5: X.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2 break; case 3: // = (1+sqrt(-1))^(p-1)/2 X.set((Big)1,(Big)1); break; case 7: // = (2+sqrt(-1))^(p-1)/2 X.set((Big)2,(Big)1); break; default: break; } X=pow(X,(p-1)/2); } int main() { ifstream common("nk4.ecs"); // elliptic curve parameters miracl* mip=&precision; ECn Alice,Bob,sA,sB; ECn2 Server,sS; ZZn2 res,sp,ap,bp,wa,wb,w1,w2,Fr; ZZn ww; ZZn4 w; Big a,b,s,ss,p,q,r,B,cof,n,t1; Big cf[2]; int i,bitz,A; time_t seed; cout << "Started" << endl; common >> bitz; mip->IOBASE=16; common >> p; common >> A; common >> B; common >> cof; // #E/q common >> q; // low hamming weight q common >> cf[0]; // [(p^2+1)/q]/p common >> cf[1]; // [(p^2+1)/q]%p cout << "Initialised... " << p%8 << endl; Big t=p+1-cof*q; Big cof2=(p*p+1)/q+(t*t-2*p)/q; t1=p-cof*q; // t-1 time(&seed); irand((long)seed); ecurve(A,B,p,MR_AFFINE); set_frobenius_constant(Fr); mip->IOBASE=16; mip->TWIST=TRUE; // map Server to point on twisted curve E(Fp2) // hash Identities to curve point ss=rand(q); // TA's super-secret cout << "Mapping Server ID to point" << endl; Server=hash2((char *)"Server",cof2); cout << "Mapping Alice & Bob ID's to points" << endl; Alice=hash_and_map((char *)"Alice",cof); Bob= hash_and_map((char *)"Robert",cof); cout << "Alice, Bob and the Server visit Trusted Authority" << endl; sS=ss*Server; sA=ss*Alice; sB=ss*Bob; cout << "Alice and Server Key Exchange" << endl; a=rand(q); // Alice's random number s=rand(q); // Server's random number if (!power_pairing(Server,sA,t1,cf,Fr,a,q,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn2)1) { cout << "Wrong group order - aborting" << endl; exit(0); } ap=res; if (!power_pairing(sS,Alice,t1,cf,Fr,s,q,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn2)1) { cout << "Wrong group order - aborting" << endl; exit(0); } sp=res; cout << "Alice Key= " << H2(powl(sp,a)) << endl; cout << "Server Key= " << H2(powl(ap,s)) << endl; cout << "Bob and Server Key Exchange" << endl; b=rand(q); // Bob's random number s=rand(q); // Server's random number if (!power_pairing(Server,sB,t1,cf,Fr,b,q,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn2)1) { cout << "Wrong group order - aborting" << endl; exit(0); } bp=res; if (!power_pairing(sS,Bob,t1,cf,Fr,s,q,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn2)1) { cout << "Wrong group order - aborting" << endl; exit(0); } sp=res; cout << "Bob's Key= " << H2(powl(sp,b)) << endl; cout << "Server Key= " << H2(powl(bp,s)) << endl; return 0; }