/* Scott's AKE Client/Server testbed See http://eprint.iacr.org/2002/164 Compile as cl /O2 /GX /DZZNS=8 ake8bwt.cpp zzn8.cpp zzn4.cpp zzn2.cpp ecn4.cpp big.cpp zzn.cpp ecn.cpp miracl.lib Fastest using COMBA build for 256-bit mod-mul Brezing-Weng Curve - Tate pairing The file weng.ecs is required. This curve was constructed using the method described in http://eprint.iacr.org/2003/143/ Security is 192/2048 Modified to prevent sub-group confinement attack NOTE: assumes p = 5 mod 8, p is 256-bits **** NEW **** Based on the observation by R. Granger and D. Page and N.P. Smart in "High Security Pairing-Based Cryptography Revisited" that multi-exponentiation can be used for the final exponentiation of the Tate pairing, we suggest the Power Pairing, which calculates E(P,Q,e) = e(P,Q)^e, where the exponentiation by e is basically for free, as it can be folded into the multi-exponentiation. NOTE: Irreducible polynomial is x^8+2 : p = 5 mod 8 */ #include #include #include #include "ecn.h" #include #include "ecn4.h" #include "zzn8.h" using namespace std; Miracl precision(8,0); // Using SHA-1 as basic hash algorithm #define HASH_LEN 20 // // Define one or the other of these // // Which is faster depends on the I/M ratio - See imratio.c // Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE // #ifdef MR_AFFINE_ONLY #define AFFINE #else #define PROJECTIVE #endif // // Tate Pairing Code // // Extract ECn point in internal ZZn format // void extract(ECn& A,ZZn& x,ZZn& y) { x=(A.get_point())->X; y=(A.get_point())->Y; } #ifdef PROJECTIVE void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z) { big t; x=(A.get_point())->X; y=(A.get_point())->Y; t=(A.get_point())->Z; if (A.get_status()!=MR_EPOINT_GENERAL) z=1; else z=t; } #endif // // Line from A to destination C. Let A=(x,y) // Line Y-slope.X-c=0, through A, so intercept c=y-slope.x // Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0 // Now evaluate at Q -> return (Qy-y)-slope.(Qx-x) // ZZn8 line(ECn& A,ECn& C,ZZn& slope,ZZn4& Qx,ZZn4& Qy) { ZZn8 w; ZZn4 m=Qx; ZZn x,y,z,t; #ifdef AFFINE extract(A,x,y); m-=x; m*=slope; w.set((ZZn4)-y,Qy); w-=m; #endif #ifdef PROJECTIVE extract(A,x,y,z); x*=z; t=z; z*=z; z*=t; x*=slope; t=slope*z; m*=t; m-=x; t=z; extract(C,x,x,z); m+=(z*y); t*=z; w.set(m,-Qy*t); #endif return w; } // // Add A=A+B (or A=A+A) // Bump up num // void g(ECn& A,ECn& B,ZZn4& Qx,ZZn4& Qy,ZZn8& num,BOOL first) { int type; ZZn lam; ZZn8 u; big ptr; ECn P=A; // Evaluate line from A type=A.add(B,&ptr); if (!type) return; lam=ptr; u=line(P,A,lam,Qx,Qy); if (first) num= u; else num*=u; } // // Tate Pairing - note denominator elimination has been applied // // P is a point of order q. Q(x,y) is a point of order m.q. // Note that P is a point on the curve over Fp, Q(x,y) a point on the // extension field Fp^4 // // New! Power Pairing calculates E(P,Q,e) = e(P,Q)^e at no extra cost! // // BOOL power_tate(ECn& P,ECn4 Q,Big& q,Big *cf,ZZn2 &Fr,Big &e,ZZn4& r) { int i,nb,j,n,nbw,nzs; ECn A,P2,t[8]; ZZn8 w,res,hc,z2n,zn[8],a[4]; ZZn4 Qx,Qy; ZZn2 x,y; Big p=get_modulus(); Big carry,ex[4]; Q.get(Qx,Qy); // convert from twist Qx=tx(Qx); Qx.get(x,y); Qx.set(tx(x),tx(y)); Qx=-Qx/2; // Qx=-2.i^6.Qx, i is 8th root of -2 Qy.get(x,y); Qy.set(tx(x),tx(y)); Qy=-Qy/2; // Qy=-2.i^4.Qx res=zn[0]=1; /* Left to right method */ t[0]=P2=A=P; g(P2,P2,Qx,Qy,z2n,TRUE); normalise(P2); for (i=1;i<8;i++) { g(A,P2,Qx,Qy,hc,TRUE); t[i]=A; zn[i]=z2n*zn[i-1]*hc; } multi_norm(8,t); A=P; nb=bits(q); for (i=nb-2;i>=0;i-=(nbw+nzs)) { n=window(q,i,&nbw,&nzs,4); for (j=0;j0) { res*=zn[n/2]; g(A,t[n/2],Qx,Qy,res,FALSE); } for (j=0;j=0;i--) carry=mad(cf[i],e,carry,p,ex[i]); } res=pow(4,a,ex); r=real(res); // compression // r=powl(real(res),cf[0]*p*p*p+cf[1]*p*p+cf[2]*p+cf[3]); // ^(p*p*p*p+1)/q if (r.isunity()) return FALSE; return TRUE; } // // Hash functions // Big H1(char *string) { // Hash a zero-terminated string to a number < modulus Big h,p; char s[HASH_LEN]; int i,j; sha sh; shs_init(&sh); for (i=0;;i++) { if (string[i]==0) break; shs_process(&sh,string[i]); } shs_hash(&sh,s); p=get_modulus(); h=1; j=0; i=1; forever { h*=256; if (j==HASH_LEN) {h+=i++; j=0;} else h+=s[j++]; if (h>=p) break; } h%=p; return h; } Big H4(ZZn4 x) { // Hash an Fp2 to a big number sha sh; Big a,u,v; ZZn2 X,Y; char s[HASH_LEN]; int m; shs_init(&sh); x.get(X,Y); X.get(u,v); a=u; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } a=v; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } Y.get(u,v); a=u; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } a=v; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } shs_hash(&sh,s); a=from_binary(HASH_LEN,s); return a; } // Hash and map a Server Identity to a curve point E(Fp4) ECn4 hash4(char *ID) { ECn4 T; ZZn4 x; ZZn2 X,Y; Big x0,y0; x0=y0=1; X.set(x0,y0); y0=1; x0=H1(ID); do { Y.set(x0,y0); x.set(X,Y); x0+=1; } while (!is_on_curve(x)) ; T.set(x); // while (!T.set(x)); return T; } // Hash and map a Client Identity to a curve point E(Fp) ECn hash_and_map(char *ID,Big cof) { ECn Q; Big x0=H1(ID); while (!is_on_curve(x0)) x0+=1; Q.set(x0); // Make sure its on E(F_p) Q*=cof; return Q; } void set_frobenius_constant(ZZn2 &X) { Big p=get_modulus(); switch (get_mip()->pmod8) { case 5: X.set((Big)0,(Big)1); // = (sqrt(sqrt(-2))^(p-1)/4 X=pow(X,(p-1)/4); break; case 3: X.set((Big)1,(Big)1); X=pow(X,(p-3)/4); break; case 7: X.set((Big)2,(Big)1); X=pow(X,(p-3)/4); // note that 4 does not divide p-1, so this is the best we can do... default: break; } } int main() { ifstream common("weng.ecs"); // elliptic curve parameters miracl* mip=&precision; ECn Alice,Bob,sA,sB; ECn4 Server,sS; ZZn4 res,sp,ap,bp; ZZn2 Fr; Big a,b,s,ss,p,q,r,B,cof,t,ii; int i,bitz,A; time_t seed; Big cf[4]; cout << "Started" << endl; common >> bitz; mip->IOBASE=16; common >> p; common >> A; common >> B; common >> cof; common >> q; common >> cf[0]; common >> cf[1]; common >> cf[2]; common >> cf[3]; cout << "Initialised... " << p%24 << endl; // cout << "ham(q)= " << ham(q) << endl; // q*=(Big)"5B51"; // cout << "q= " << q << endl; /* ii=1; forever { t=ii*q; t=4*t-3; if (sqrt(t)*sqrt(t)==t) break; ii=ii+1; } cout << "ii= " << ii << endl; */ time(&seed); irand((long)seed); #ifdef AFFINE ecurve(A,B,p,MR_AFFINE); #endif #ifdef PROJECTIVE ecurve(A,B,p,MR_PROJECTIVE); #endif set_frobenius_constant(Fr); mip->IOBASE=16; mip->TWIST=MR_QUADRATIC; // map Server to point on twisted curve E(Fp2) // hash Identities to curve point ss=rand(q); // TA's super-secret cout << "Mapping Server ID to point" << endl; Server=hash4((char *)"Server"); cout << "Mapping Alice & Bob ID's to points" << endl; Alice=hash_and_map((char *)"Alice",cof); Bob= hash_and_map((char *)"Robert",cof); cout << "Alice, Bob and the Server visit Trusted Authority" << endl; sS=ss*Server; sA=ss*Alice; sB=ss*Bob; cout << "Alice and Server Key Exchange" << endl; a=rand(q); // Alice's random number s=rand(q); // Server's random number if (!power_tate(sA,Server,q,cf,Fr,a,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn4)1) { cout << "Wrong group order - aborting" << endl; exit(0); } // ap=powl(res,a); ap=res; if (!power_tate(Alice,sS,q,cf,Fr,s,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn4)1) { cout << "Wrong group order - aborting" << endl; exit(0); } // sp=powl(res,s); sp=res; cout << "Alice Key= " << H4(powl(sp,a)) << endl; cout << "Server Key= " << H4(powl(ap,s)) << endl; cout << "Bob and Server Key Exchange" << endl; b=rand(q); // Bob's random number s=rand(q); // Server's random number if (!power_tate(sB,Server,q,cf,Fr,b,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn4)1) { cout << "Wrong group order - aborting" << endl; exit(0); } // bp=powl(res,b); bp=res; if (!power_tate(Bob,sS,q,cf,Fr,s,res)) cout << "Trouble" << endl; if (powl(res,q)!=(ZZn4)1) { cout << "Wrong group order - aborting" << endl; exit(0); } // sp=powl(res,s); sp=res; cout << "Bob's Key= " << H4(powl(sp,b)) << endl; cout << "Server Key= " << H4(powl(bp,s)) << endl; return 0; }