KGC_TEST/KGC/miracl/source/curve/poly2xy.cpp

705 lines
14 KiB
C++

/*
* C++ class to implement a bivariate polynomial type and to allow
* arithmetic on such polynomials whose coefficients are from
* the finite field of characteristic 2
*
* WARNING: This class has been cobbled together for a specific use with
* the MIRACL library. It is not complete, and may not work in other
* applications
*
* See Knuth The Art of Computer Programming Vol.2, Chapter 4.6
*/
#include "poly2xy.h"
#include <iostream>
using namespace std;
Poly2XY::Poly2XY(const GF2m& c, int p, int y)
{
start=NULL;
addterm(c,p,y);
}
Poly2XY::Poly2XY(int p)
{
start=NULL;
addterm((GF2m)p,0,0);
}
Poly2XY::Poly2XY(const Poly2XY& p)
{
term2XY *ptr=p.start;
term2XY *pos=NULL;
start=NULL;
while (ptr!=NULL)
{
pos=addterm(ptr->an,ptr->nx,ptr->ny,pos);
ptr=ptr->next;
}
}
Poly2XY::Poly2XY(const Poly2& p)
{
term2 *ptr=p.start;
term2XY *pos=NULL;
start=NULL;
while (ptr!=NULL)
{
pos=addterm(ptr->an,ptr->n,0,pos);
ptr=ptr->next;
}
}
Poly2XY::~Poly2XY()
{
term2XY *nx;
while (start!=NULL)
{
nx=start->next;
delete start;
start=nx;
}
}
GF2m Poly2XY::coeff(int powx,int powy) const
{
GF2m c=0;
term2XY *ptr=start;
while (ptr!=NULL)
{
if (ptr->nx==powx && ptr->ny==powy)
{
c=ptr->an;
return c;
}
ptr=ptr->next;
}
return c;
}
Poly2XY diff_dx(const Poly2XY& f)
{
Poly2XY r;
term2XY *pos=NULL;
term2XY *ptr=f.start;
while (ptr!=NULL)
{
pos=r.addterm(ptr->an*(GF2m)ptr->nx,ptr->nx-1,ptr->ny,pos);
ptr=ptr->next;
}
return r;
}
Poly2XY diff_dy(const Poly2XY& f)
{
Poly2XY r;
term2XY *pos=NULL;
term2XY *ptr=f.start;
while (ptr!=NULL)
{
pos=r.addterm(ptr->an*(GF2m)ptr->ny,ptr->nx,ptr->ny-1,pos);
ptr=ptr->next;
}
return r;
}
Poly2 Poly2XY::F(const GF2m& y)
{
Poly2 r;
term2 *pos=NULL;
int i,maxy=0;
GF2m f;
term2XY *ptr=start;
while (ptr!=NULL)
{
if (ptr->ny>maxy) maxy=ptr->ny;
ptr=ptr->next;
}
// max y is max power of y present
GF2m *pw=new GF2m[maxy+1]; // powers of y
pw[0]=(GF2m)1;
for (i=1;i<=maxy;i++)
pw[i]=y*pw[i-1];
ptr=start;
while (ptr!=NULL)
{
pos=r.addterm(ptr->an*pw[ptr->ny],ptr->nx,pos);
ptr=ptr->next;
}
delete [] pw;
return r;
}
GF2m Poly2XY::F(const GF2m& x,const GF2m& y)
{
Poly2 r=F(y);
// cout << "r: " << r << endl;
return r.F(x);
}
void Poly2XY::clear()
{
term2XY *ptr;
while (start!=NULL)
{
ptr=start->next;
delete start;
start=ptr;
}
}
// Convert a poly2xy object to a poly2 object by just taking the
// "x" value
Poly2 Poly2XY::convert_x() const
{
term2XY *ptr=start;
term2 *pos=NULL;
Poly2 newpoly;
while (ptr!=NULL)
{
pos = newpoly.addterm(ptr->an,ptr->nx,pos);
ptr = ptr->next;
}
return newpoly;
}
// Convert a poly2xy object to a poly2 object by just taking the
// "x" value when the corresponding "y" value is 0
Poly2 Poly2XY::convert_x2() const
{
term2XY *ptr=start;
term2 *pos=NULL;
Poly2 newpoly;
while (ptr!=NULL)
{
if(ptr->ny == 0)
pos = newpoly.addterm(ptr->an,ptr->nx,pos);
ptr = ptr->next;
}
return newpoly;
}
// Convert a poly2xy object to a poly2 object by just taking the
// "x" value when the corresponding "y" value is greater than 0
Poly2 Poly2XY::convert_x3() const
{
term2XY *ptr=start;
term2 *pos=NULL;
Poly2 newpoly;
while (ptr!=NULL)
{
if(ptr->ny > 0)
pos = newpoly.addterm(ptr->an,ptr->nx,pos);
ptr = ptr->next;
}
return newpoly;
}
Poly2XY& Poly2XY::operator=(int p)
{
clear();
addterm((GF2m)p, 0, 0);
return *this;
}
Poly2XY& Poly2XY::operator=(const Poly2XY& p)
{
term2XY *ptr,*pos=NULL;
clear();
ptr=p.start;
while (ptr!=NULL)
{
pos=addterm(ptr->an,ptr->nx,ptr->ny,pos);
ptr=ptr->next;
}
return *this;
}
term2XY* Poly2XY::addterm(const GF2m& a,int powx,int powy,term2XY *pos)
{
term2XY* newone;
term2XY* ptr;
term2XY *t,*iptr;
ptr=start;
iptr=NULL;
if (a.iszero()) return pos;
// quick scan through to detect if term exists already
// and to find insertion point
if (pos!=NULL) ptr=pos;
while (ptr!=NULL)
{
if (ptr->nx==powx && ptr->ny==powy)
{
ptr->an+=a;
if (ptr->an.iszero())
{ // delete term
if (ptr==start)
{ // delete first one
start=ptr->next;
delete ptr;
return start;
}
iptr=ptr;
ptr=start;
while (ptr->next!=iptr)ptr=ptr->next;
ptr->next=iptr->next;
delete iptr;
return ptr;
}
return ptr;
}
if (ptr->nx>powx) iptr=ptr;
if (ptr->nx==powx && ptr->ny>powy) iptr=ptr;
ptr=ptr->next;
}
newone=new term2XY;
newone->next=NULL;
newone->an=a;
newone->nx=powx;
newone->ny=powy;
pos=newone;
if (start==NULL)
{
start=newone;
return pos;
}
// insert at the start
if (iptr==NULL)
{
t=start;
start=newone;
newone->next=t;
return pos;
}
// insert new term
t=iptr->next;
iptr->next=newone;
newone->next=t;
return pos;
}
ostream& operator<<(ostream& s,const Poly2XY& p)
{
BOOL first=TRUE;
GF2m a;
term2XY *ptr=p.start;
if (ptr==NULL)
{
s << "0";
return s;
}
while (ptr!=NULL)
{
a=ptr->an;
if ((Big)a<get_modulus()/2)
{
if (!first) s << " + ";
}
else
{
a=(-a);
s << " - ";
}
if (ptr->nx==0 && ptr->ny==0)
s << a;
else
{
if (a!=(GF2m)1) s << a << "*";
if (ptr->nx!=0)
{
s << "x";
if (ptr->nx!=1) s << "^" << ptr->nx;
}
if (ptr->ny!=0)
{
if (ptr->nx!=0) s << ".";
s << "y";
if (ptr->ny!=1) s << "^" << ptr->ny;
}
}
first=FALSE;
ptr=ptr->next;
}
return s;
}
/*
Poly2XY operator*(const GF2m& c,Variable x)
{
Poly2XY t(c,1);
return t;
}
*/
Poly2XY operator*(Variable x,Variable y)
{
Poly2XY t((GF2m)1,1,1);
return t;
}
Poly2XY pow2X(Variable x,int n)
{
Poly2XY r((GF2m)1,n,0);
return r;
}
Poly2XY pow2Y(Variable y,int n)
{
Poly2XY r((GF2m)1,0,n);
return r;
}
Poly2XY operator%(const Poly2XY& u,const Poly2XY& v)
{
Poly2XY r=u;
r%=v;
return r;
}
/*
Poly2XY operator*(const Poly2XY& u,const Poly2XY& v)
{
Poly2XY r=u;
r*=v;
return r;
}
*/
Poly2XY& Poly2XY::operator%=(const Poly2XY& v)
{
GF2m m,pq;
int power, power2;
term2XY *rptr=start;
term2XY *vptr=v.start;
term2XY *ptr,*pos;
if (degreeX(*this)<degreeX(v) && degreeY(*this)<degreeY(v)) return *this;
m=((GF2m)1/vptr->an);
while (rptr!=NULL && rptr->nx>=vptr->nx && rptr->ny>=vptr->ny)
{
pq=rptr->an*m;
power=rptr->nx-vptr->nx;
power2=rptr->ny-vptr->ny;
pos=NULL;
ptr=v.start;
while (ptr!=NULL)
{
pos=addterm(ptr->an*pq,ptr->nx+power,ptr->ny+power2,pos);
ptr=ptr->next;
}
rptr=start;
}
return *this;
}
int degreeX(const Poly2XY& p)
{
if (p.start==NULL) return 0;
else return p.start->nx;
}
int degreeY(const Poly2XY& p)
{
term2XY *ptr=p.start;
int maxdeg = 0;
if (p.start==NULL) return 0;
while (ptr!=NULL)
{
if(ptr->ny > maxdeg)
maxdeg = ptr->ny;
ptr = ptr->next;
}
return maxdeg;
}
BOOL iszero(const Poly2XY& p)
{
if (degreeX(p)==0 && degreeY(p)==0 && p.coeff(0,0)==0) return TRUE;
else return FALSE;
}
Poly2XY operator+(const Poly2XY& a,const Poly2XY& b)
{
Poly2XY sum;
sum=a;
sum+=b;
return sum;
}
Poly2XY operator+(const Poly2XY& a,const GF2m& b)
{
Poly2XY sum=a;
sum.addterm(b,0,0);
return sum;
}
Poly2XY operator-(const Poly2XY& a,const Poly2XY& b)
{
Poly2XY sum;
sum=a;
sum-=b;
return sum;
}
Poly2XY& Poly2XY::operator+=(const Poly2XY& p)
{
term2XY *ptr,*pos=NULL;
ptr=p.start;
while (ptr!=NULL)
{
pos=addterm(ptr->an,ptr->nx,ptr->ny,pos);
ptr=ptr->next;
}
return *this;
}
Poly2XY& Poly2XY::operator-=(const Poly2XY& p)
{
term2XY *ptr,*pos=NULL;
ptr=p.start;
while (ptr!=NULL)
{
pos=addterm(-(ptr->an),ptr->nx,ptr->ny,pos);
ptr=ptr->next;
}
return *this;
}
Poly2XY& Poly2XY::operator*=(const GF2m& x)
{
term2XY *ptr=start;
while (ptr!=NULL)
{
ptr->an*=x;
ptr=ptr->next;
}
return *this;
}
BOOL operator==(const Poly2XY& a,const Poly2XY& b)
{
Poly2XY diff=a-b;
if (iszero(diff)) return TRUE;
return FALSE;
}
Poly2XY operator*(const Poly2XY &p,const GF2m& z)
{
Poly2XY r=p;
r*=z;
return r;
}
BOOL isone(const Poly2XY& p)
{
if (degreeX(p)==0 && degreeY(p)==0 && p.coeff(0,0)==1) return TRUE;
else return FALSE;
}
/*
* This function is only meant to be called from compose. It puts in a value
* for y, and then merges it with the x value
*/
Poly2XY compoY(const Poly2XY& q, const Poly2XY& p)
{
Poly2XY poly;
Poly2XY temp(p);
Variable x,y;
term2XY *qptr = q.start;
term2XY *pos=NULL;
term2XY *pptr = p.start;
int qdegree = 0;
poly.start = NULL;
while (qptr!=NULL) {
qdegree = qptr->ny;
// Multiply out y term
if(qdegree > 0) {
temp = p;
for(int i = 1; i < qdegree; i++)
temp = temp * p;
// Multiply by x term if it exists
if(qptr->nx > 0)
temp = temp * pow2X(x,qptr->nx);
poly += temp;
} else {
// Multiply by x term if it exists
if(qptr->nx > 0)
poly = poly + pow2X(x,qptr->nx);
else
poly = poly + qptr->an;
}
qptr = qptr->next;
pptr = p.start;
}
return poly;
}
Poly2XY compose(const Poly2XY& q,const Poly2XY& p,const Poly2XY& p2)
{ // compose polynomials
// assume P(x) = P3x^3 + P2x^2 + P1x^1 +P0
// Calculate P(Q(x)) = P3.(Q(x))^3 + P2.(Q(x))^2 ....
Poly2XY poly;
Poly2XY temp(p);
Variable x,y;
term2XY *qptr = q.start;
term2XY *pos=NULL;
term2XY *pptr = p.start;
int qdegree = 0;
poly.start = NULL;
while (qptr!=NULL) {
qdegree = qptr->nx;
// Multiply out x term
if(qdegree > 0) {
temp = p;
for(int i = 1; i < qdegree; i++)
temp = temp * p;
// Multiply by y term if it exists
if(qptr->ny > 0)
temp = temp * pow2Y(y,qptr->ny);
poly += temp;
} else {
// Multiply by y term if it exists
if(qptr->ny > 0)
poly = poly + pow2Y(y,qptr->ny);
else
poly = poly + qptr->an;
}
qptr = qptr->next;
pptr = p.start;
}
// return poly;
Poly2XY result = compoY(poly, p2);
return result;
}
Poly2XY operator*(const Poly2XY& a,const Poly2XY& b)
{
int i,d,dega,degb,deg;
GF2m t;
Poly2XY prod;
term2XY *iptr,*pos;
term2XY *ptr=b.start;
if (&a==&b)
{ // squaring - only diagonal terms count!
pos=NULL;
while (ptr!=NULL)
{ // diagonal terms
pos=prod.addterm(ptr->an*ptr->an,ptr->nx+ptr->nx,ptr->ny+ptr->ny,pos);
ptr=ptr->next;
}
return prod;
}
/*
dega=degree(a);
deg=dega;
degb=degree(b);
if (degb<dega) deg=degb; // deg is smallest
if (deg>=KARAT_BREAK_EVEN)
{ // use fast method
int len,m,inc;
big *A,*B,*C,*T;
deg=dega;
if (dega<degb) deg=degb; // deg is biggest
m=deg; inc=1;
while (m!=0) { m/=2; inc++; }
len=2*(deg+inc);
A=(big *)mr_alloc(deg+1,sizeof(big));
B=(big *)mr_alloc(deg+1,sizeof(big));
C=(big *)mr_alloc(len,sizeof(big));
T=(big *)mr_alloc(len,sizeof(big));
char *memc=(char *)memalloc(len);
char *memt=(char *)memalloc(len);
for (i=0;i<len;i++)
{
C[i]=mirvar_mem(memc,i);
T[i]=mirvar_mem(memt,i);
}
ptr=a.start;
while (ptr!=NULL)
{
A[ptr->n]=getbig(ptr->an);
ptr=ptr->next;
}
ptr=b.start;
while (ptr!=NULL)
{
B[ptr->n]=getbig(ptr->an);
ptr=ptr->next;
}
karmul2_poly(deg+1,T,A,B,C);
pos=NULL;
for (d=dega+degb;d>=0;d--)
{
t=(Big)C[d];
if (t.iszero()) continue;
pos=prod.addterm(t,d,pos);
}
memkill(memc,len);
memkill(memt,len);
mr_free(T);
mr_free(C);
mr_free(B);
mr_free(A);
return prod;
}
*/
while (ptr!=NULL)
{
pos=NULL;
iptr=a.start;
while (iptr!=NULL)
{
pos=prod.addterm(ptr->an*iptr->an,ptr->nx+iptr->nx,ptr->ny+iptr->ny,pos);
iptr=iptr->next;
}
ptr=ptr->next;
}
return prod;
}