KGC_TEST/KGC/miracl/source/curve/sea.cpp.bak

1681 lines
46 KiB
C++

// Schoof-Elkies-Atkin Algorithm!
// Mike Scott August 1999 mike@compapp.dcu.ie
// Counts points on GF(p) Elliptic Curve, y^2=x^3+Ax+B a prerequisite
// for implemention of Elliptic Curve Cryptography
// This program is intended as an aid to Cryptographers in generating
// suitable curves (ideally with a prime number of points) with respect
// to prime moduli from 160 to 512 bits in length. This can be done with
// relatively modest computing facilities - the average home computer and
// a little patience will suffice.
//
// An "ideal" curve is defined as one with with prime number of points.
//
// First the credits
//
// Basic algorithm is due to Schoof
// 1. "Elliptic Curves Over Finite Fields and the Computation of Square Roots
// mod p", Rene Schoof, Math. Comp., Vol. 44 pp 483-494
//
// Elkies-Atkin ideas are described in
//
// 2. "Counting points on Elliptic Curves over Finite Fields", Rene Schoof,
// Jl. de Theorie des Nombres de Bordeaux 7 (1995) pp 219-254
//
// The particular variation implemented here is due to Mueller. See his thesis
//
// 3. "Ein Algorithmus zur Bestimmung der Punktanzahl elliptischer Kurven
// uber endlichen Korpern der Charakteristik grosser drei",
// available from Volker Mueller's home page
// www.informatik.th-darmstadt.de/TI/Mitarbeiter/vmueller.html
//
// Other useful English-language publications are available from this site.
// Strongly recommended is the recent book
//
// 4. "Elliptic Curves in Cryptography"
// by Blake, Seroussi and Smart, London Mathematical Society Lecture Note
// Series 265, Cambridge University Press. ISBN 0 521 65374 6
//
// Another useful reference is
// 5. Elliptic Curve Public Key Cryptosystems", Menezes,
// Kluwer Academic Publishers, Chapter 7
//
// The Kangaroo continuation is due to Pollard:-
//
// 6. "Monte Carlo Methods for Index Computation"
// by J.M. Pollard in Math. Comp. Vol. 32 1978 pp 918-924
//
// Fast FFT methods are largely as described by Shoup
//
// 7. "A New Polynomial Factorisation Algorithm and its implementation",
// Victor Shoup, Jl. Symbolic Computation, 1996
//
// A potentially more effective way of using Atkin primes is described in
//
// 8. "Remarks on the Schoof-Elkies-Atkin Algorithm", L. Dewaghe, Math. Comp.
// Vol. 67, 223, July 1998, pp 1247-1252
//
// Thanks are due to Richard Crandall for his encouragment, and the idea of
// using projective co-ordinates.
//
// NOTE: Only for use on curves over large prime modulus P.
// For smaller P use schoof.exe utility available from the same source.
//
// This first version does not process so-called Atkin primes
// Schoof's original algorithm is used for primes 3, 5 and 7 (this facilitates
// "early abort" using the -s option).
//
// After that only Elkies primes are used. It is therefore not as fast as it
// could be, particularly for smaller values of the prime modulus P.
// However when the asymptotics kick-in, it starts to get competitive (when
// you need it to). Since the average Cryptographer will only wish to
// generate a few curves for practical use, this is deemed to be adequate.
// The final continuation uses Pollard's Lambda ("kangaroo") algorithm.
//
// It is envisaged that from time-to-time this program will be modified
// and hopefully improved - that is speeded up.
// In particular it is planned to exploit Atkin Primes to allow two herds of
// kangaroos complete the job more efficiently
//
// Asyptotically the algorithm should take time O(log(p)^5)
// However the Kangaroo continuation favours "smaller" curves, while
// the asymptotic behaviour is more accurate for "bigger" curves
//
// Timings in minutes:- random curves 180MHz Pentium Pro
// (ignoring time to generate Modular Polynomials)
//
// C1 C2 C3 Ave Asymptotic multiplier wrt 160 bits
// 160-bit 2.5 3.0 2.0 2.5 1
// 192-bit 5.5 5.5 3.5 4.8 2.5
// 224-bit 9 7.5 10 8.8 5.4
// 256-bit 13.5 21.5 23 19.3 10.5
// 384-bit 86 108 120 105 60
// 512-bit 600 357 398 452 336
//
// As can be seen the asymptotic behaviour of the program would appear to
// be about right. The wide variations in timing for the same size of curve
// is typical - it depends on how "lucky" you are finding Elkies Primes
//
// ****************
// Download Instructions
//
// To access the Windows 'NT/95/98 executables directly, point your
// browser at ftp://ftp.compapp.dcu.ie/pub/crypto, and download
//
// mueller.exe
// modpol.exe
// process.exe
// sea.exe
//
// The main program source file for these programs may be found in the
// same place, with .cpp extensions.
//
// To obtain the full source code first look at
// the README file on the ftp site, and then download
//
// ftp://ftp.compapp.dcu.ie/pub/crypto/miracl.zip
// To recompile, see the file sea.txt
//
// For more information:-
//
// http://indigo.ie/~mscott
//
// ****************
// Instructions for use
//
// First run the utility "mueller" to build up a collection of Modular
// Polynomials. Each modular polynomial is associated with a small odd prime.
// This needs to be done once only - ever, but you can from time
// to time augment your collection of Polynomials by running it again.
// Its quite time consuming, but in less than an hour you should have enough
// to get started. The more you have, the bigger the prime modulus that you
// can use.
//
// Then run the utility "process" to process the raw polynomial file with
// respect to your chosen prime modulus P. This need to be done just once for
// every prime modulus of interest to you. This takes only a few minutes at
// most.
//
// An alternative is to use instead the "modpol" application, which is a
// composite of "mueller" and "process". It directly generates the Modular
// Polynomials reduced wrt a pre-specified prime modulus, suitable for
// immediate use by "sea". If working with limited computing resources such
// that sufficient generic Modular Polynomials cannot be generated by
// "mueller", this may be your only alternative.
//
// Finally run this program "sea" specifying the A and B parameters of the
// particular curve. This program can also search through many curves for
// a curve ideal for cryptographic use (with a prime number of points).
//
// For example try:-
//
// mueller 0 120 -o mueller.raw
// process -f 65112*2#144-1 -i mueller.raw -o test160.pol
// sea -3 49 -i test160.pol
//
// Here the "mueller" program generates modular polynomials for all odd primes
// in the range 0 - 120 into the file mueller.raw. The "process" application
// reduces these 'raw' polynomials wrt the 160 bit prime modulus
// P = 65112*2^144-1 to a file test160.pol. The "sea" application uses this
// file to count the points on the curve Y^2 = X^3 - 3X + 49 mod P
//
// Alternatively:-
//
// modpol -f 65112*2#144-1 0 120 -o test160.pol
// sea -3 49 -i test160.pol
//
// The number of Modular Polynomials required depends on the size of the
// prime modulus P. It is also random in the sense that it depends on the
// probability of each small prime being an "Elkies" prime wrt the given curve.
// In the vast majority of cases the range suggested to "mueller" or "modpol"
// should be 0 to bits(P), where bits(P) is the number of bits in P. However
// you might get away with a much smaller value if you are lucky with your
// "Elkies" primes. If modular polynomials could not be generated for all
// primes in the range, due to the use of the -s2, -s3 or -s6 flag in
// "mueller" or "modpol" (see comments in mueller.cpp), then a somewhat
// larger range might be needed.
//
// When using the "sea" program, the -s option is particularly useful
// and allows automatic search for an "ideal" curve. If a curve order is
// exactly divisible by a small prime, that curve is immediately abandoned,
// and the program moves on to the next, incrementing the B parameter of
// the curve. This is a fairly arbitrary but simple way of moving on to
// the "next" curve.
//
// Note that if a prime q is an Atkin prime, then we know at least that q
// is not a factor of NP, in other words that NP mod q != 0.
// This can be easily proved.
//
// NOTE: The output file can be used directly with for example the ECDSA
// programs IF AND ONLY IF an ideal curve is found. If you wish to use
// a less-than-ideal curve, you will first have to factor NP completely, and
// find a random point of large prime order.
//
// ****************
//
// Rev. 1 September 1999 - Faster and more Kangaroos!
// Rev. 2 October 1999 - Poly class revamped. Faster search for tau mod lp
// Rev. 3 October 1999 - Eliminated calculation of X^P
// Rev. 4 December 1999 - Various optimizations
//
// This implementation is free. No terms, no conditions. It requires
// version 4.24 or greater of the MIRACL library (a Shareware, Commercial
// product, but free for non-profit making use),
// available from ftp://ftp.compapp.dcu.ie/pub/crypto/miracl.zip
//
// However this program may be freely used (unmodified!) to generate curves
// for commercial use. It may be recompiled for this purpose on any hardware.
//
// 32-bit build only
//
// Note that is a little faster to use an integer-only build of MIRACL.
// See mirdef.hio
//
//
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstring>
#include "ecn.h" // Elliptic Curve Class
#include "crt.h" // Chinese Remainder Theorem Class
//
// poly.h implements polynomial arithmetic. FFT methods are used for maximum
// speed, as the polynomials can get very big.
// But all that gruesome detail is hidden away.
//
// polymod.h implements polynomial arithmetic wrt to a preset poynomial
// modulus. This looks a bit neater. Function setmod() sets the modulus
// to be used. Again fast FFT methods are used.
//
// polyxy.h implements a bivariate polynomial class
//
#include "poly.h"
#include "polymod.h"
#include "polyxy.h"
using namespace std;
#ifndef MR_NOFULLWIDTH
Miracl precision=18; // max. 18x32 bits per big number
#else
Miracl precision(18,MAXBASE);
#endif
PolyMod MY2,MY4;
ZZn A,B; // Here ZZn are integers mod the prime p
// Montgomery representation is used internally
BOOL Edwards=FALSE;
// Elliptic curve Point duplication formula
void elliptic_dup(PolyMod& X,PolyMod& Y,PolyMod& Z)
{ // (X,Y,Z)=2.(X,Y,Z)
PolyMod W1,W2,W3,W4;
W2=Z*Z; // 1
W3=A*(W2*W2); // 2
W1=X*X; // 3
W4=3*W1+W3;
Z*=(2*Y); // 4 Z has an implied y
W2=MY2*(Y*Y); // 5
W3=4*X*W2; // 6
W1=W4*W4; // 7
X=W1-2*W3;
W2*=W2;
W2*=8; // 8
W3-=X;
W3*=W4; // 9 polynomial multiplications
Y=W3-W2;
X*=MY2; // fix up - move implied y from Z to Y
Y*=MY2;
Z*=MY2;
}
//
// This is addition formula for two distinct points on an elliptic curve
// Works with projective coordinates which are automatically reduced wrt a
// polynomial modulus
// Remember that the expression for the Y coordinate of each point
// (a function of X) is implicitly multiplied by Y.
// We know Y^2=X^3+AX+B, but we don't have an expression for Y
// So if Y^2 ever crops up - substitute for it
//
void elliptic_add(PolyMod& XT,PolyMod& YT,PolyMod& ZT,PolyMod& X,PolyMod& Y)
{ // add (X,Y,1) to (XT,YT,ZT)
// on an elliptic curve
PolyMod W1,W2,W4,W5,W6;
W1=XT;
W6=ZT*ZT; // 1
W4=X*W6; // 2 *
W1-=W4;
W2=YT; // W2 has an implied y
W6*=ZT; // 3
W5=Y*W6; // 4 * W5 has an implied y
W2-=W5;
if (iszero(W1))
{
if (iszero(W2))
{ // should have doubled
elliptic_dup(XT,YT,ZT);
return;
}
else
{ // point at infinity
ZT.clear();
return;
}
}
W4=W1+2*W4; // W4=2*W4+W1
W5=W2+2*W5; // W5=2*W5+W2
ZT*=W1; // 5
W6=W1*W1; // 6
W1*=W6; // 7
W6*=W4; // 8
W4=MY2*(W2*W2); // 9 Substitute for Y^2
XT=W4-W6;
W6=W6-2*XT;
W2*=W6; // 10
W1*=W5; // 11 polynomial multiplications
W5=W2-W1;
YT=W5/(ZZn)2;
return;
}
//
// Program to compute the order of a point on an elliptic curve
// using Pollard's lambda method for catching kangaroos.
//
// As a way of counting points on an elliptic curve, this
// has complexity O(p^(1/4))
//
// However Schoof puts a spring in the step of the kangaroos
// allowing them to make bigger jumps, and lowering overall complexity
// to O(p^(1/4)/sqrt(L)) where L is the product of the Schoof primes
//
// See "Monte Carlo Methods for Index Computation"
// by J.M. Pollard in Math. Comp. Vol. 32 1978 pp 918-924
//
// This code has been considerably speeded up using ideas from
// "Parallel Collision Search with Cryptographic Applications", van Oorchot
// and Wiener, J. Crypto., Vol. 12, 1-28, 1999
//
#define STORE 80
#define HERD 5
ECn wild[STORE],tame[STORE];
Big wdist[STORE],tdist[STORE];
int wname[STORE],tname[STORE];
Big kangaroo(Big p,Big order,Big ordermod)
{
ECn ZERO,K[2*HERD],TE[2*HERD],X,P,G,table[128],trap;
Big start[2*HERD],txc,wxc,mean,leaps,upper,lower,middle,a,b,x,y,n,w,t,nrp;
int i,jj,j,m,sp,nw,nt,cw,ct,k,distinguished,nbits;
Big D[2*HERD],s,distance[128],real_order;
BOOL bad,collision,abort;
forever
{
// find a random point on the curve
do
{
x=rand(p);
} while (!P.set(x,x));
lower=p+1-2*sqrt(p)-3; // lower limit of search
upper=p+1+2*sqrt(p)+3; // upper limit of search
w=1+(upper-lower)/ordermod;
leaps=sqrt(w);
mean=HERD*leaps/2; // ideal mean for set S=1/2*w^(0.5)
nbits=bits(leaps/16);
if (nbits>30) nbits=30;
distinguished=1<<nbits;
for (s=1,m=1;;m++)
{ /* find table size */
distance[m-1]=s*ordermod;
s*=2;
if ((2*s/m)>mean) break;
}
table[0]=ordermod*P;
for (i=1;i<m;i++)
{ // double last entry
table[i]=table[i-1];
table[i]+=table[i-1];
}
middle=(upper+lower)/2;
if (ordermod>1)
middle+=(ordermod+order-middle%ordermod); // middle must be
// order mod ordermod
for (i=0;i<HERD;i++) start[i]=middle+13*ordermod*i; // tame ones
for (i=0;i<HERD;i++) start[HERD+i]=13*ordermod*i; // wild ones
for (i=0;i<2*HERD;i++)
{
K[i]=start[i]*P; // on your marks ....
D[i]=0; // distance counter
}
cout << "Releasing " << HERD << " Tame and " << HERD << " Wild Kangaroos\n";
nt=0; nw=0; cw=0; ct=0;
collision=FALSE; abort=FALSE;
forever
{
for (jj=0;jj<HERD;jj++)
{
K[jj].get(txc);
i=txc%m; /* random function */
if (txc%distinguished==0)
{
if (nt>=STORE)
{
abort=TRUE;
break;
}
cout << "." << flush;
tame[nt]=K[jj];
tdist[nt]=D[jj];
tname[nt]=jj;
for (k=0;k<nw;k++)
{
if (wild[k]==tame[nt])
{
ct=nt; cw=k;
collision=TRUE;
break;
}
}
if (collision) break;
nt++;
}
D[jj]+=distance[i];
TE[jj]=table[i];
}
if (collision || abort) break;
for (jj=HERD;jj<2*HERD;jj++)
{
K[jj].get(wxc);
j=wxc%m;
if (wxc%distinguished==0)
{
if (nw>=STORE)
{
abort=TRUE;
break;
}
cout << "." << flush;
wild[nw]=K[jj];
wdist[nw]=D[jj];
wname[nw]=jj;
for (k=0;k<nt;k++)
{
if (tame[k]==wild[nw])
{
ct=k; cw=nw;
collision=TRUE;
break;
}
}
if (collision) break;
nw++;
}
D[jj]+=distance[j];
TE[jj]=table[j];
}
if (collision || abort) break;
multi_add(2*HERD,TE,K); // jump together - its faster
}
cout << endl;
if (abort)
{
cout << "Failed - this should be rare! - trying again" << endl;
continue;
}
nrp=start[tname[ct]]-start[wname[cw]]+tdist[ct]-wdist[cw];
// = order mod ordermod
G=P;
G*=nrp;
if (G!=ZERO)
{
cout << "Sanity Check Failed. Please report to mike@compapp.dcu.ie" << endl;
exit(0);
}
if (Edwards)
{
if (prime(nrp/4))
{
cout << "NP/4= " << nrp/4 << endl;
cout << "NP/4 is Prime!" << endl;
break;
}
}
else
{
if (prime(nrp))
{
cout << "NP= " << nrp << endl;
cout << "NP is Prime!" << endl;
break;
}
}
// final checks....
real_order=nrp; i=0;
forever
{
sp=get_mip()->PRIMES[i];
if (sp==0) break;
if (real_order%sp==0)
{
G=P;
G*=(real_order/sp);
if (G==ZERO)
{
real_order/=sp;
continue;
}
}
i++;
}
if (real_order <= 4*sqrt(p))
{
cout << "Low Order point used - trying again" << endl;
continue;
}
real_order=nrp;
for (i=0;(sp=get_mip()->PRIMES[i])!=0;i++)
while (real_order%sp==0) real_order/=sp;
if (real_order==1)
{ // all factors of nrp were considered
cout << "NP= " << nrp << endl;
break;
}
if (prime(real_order))
{ // all factors of NP except for one last one....
G=P;
G*=(nrp/real_order);
if (G==ZERO)
{
cout << "Failed - trying again" << endl;
continue;
}
else
{
cout << "NP= " << nrp << endl;
break;
}
}
// Couldn't be bothered factoring nrp completely
// Probably not an interesting curve for Cryptographic purposes anyway.....
// But if 10 random points are all "killed" by nrp, its almost
// certain to be the true NP, and not a multiple of a small order.
bad=FALSE;
for (i=0;i<10;i++)
{
do
{
x=rand(p);
} while (!P.set(x,x));
G=P;
G*=nrp;
if (G!=ZERO)
{
bad=TRUE;
break;
}
}
if (bad)
{
cout << "Failed - trying again" << endl;
continue;
}
cout << "NP is composite and not ideal for Cryptographic use" << endl;
cout << "NP= " << nrp << " (probably)" << endl;
break;
}
return nrp;
}
//
// Coefficients Ck from Mueller's lemma 6.2
// 3. page 90
// 4. page 127-128
//
void get_ck(int terms,ZZn a,ZZn b,ZZn *c)
{
int k,h;
if (terms==0) return;
c[1]=-a/5;
if (terms==1) return;
c[2]=-b/7;
for (k=3;k<=terms;k++)
{
c[k]=0;
for (h=1;h<=k-2;h++) c[k]+=c[h]*c[k-1-h];
c[k]*=((ZZn)3/(ZZn)((k-2)*(2*k+3)));
}
}
//
// quadratic field arithmetic
// needed for Atkin Primes
//
void mulquad(int p,int qnr,int x,int y,int& a,int& b)
{
int olda=a;
a=(a*x+b*y*qnr)%p;
b=(olda*y+b*x)%p;
}
void powquad(int p,int qnr,int x,int y,int e,int& a,int& b)
{
int k=e;
a=1;
b=0;
if (k==0) return;
for(;;)
{
if (k%2!=0)
mulquad(p,qnr,x,y,a,b);
k/=2;
if (k==0) return;
mulquad(p,qnr,x,y,x,y);
}
}
//
// Euler Totient function
//
int phi(int n)
{
int i,r=1;
for (i=2;i<n;i++) if (igcd(i,n)==1) r++;
return r;
}
int main(int argc,char **argv)
{
ofstream ofile;
ifstream mueller;
int SCHP,first,max,lower,ip,parity,pbits,lp,i,jj,is,n,nx,ny,nl;
int sl[8],k,tau,lambda;
mr_utype good[100],l[100],t[100];
Big a,b,c,p,nrp,x,y,d,accum;
PolyMod XX,YY,XP,XPP,YP,YPP;
PolyXY MP,Gl[200];
termXY *posXY;
Poly F,G,P[500],P2[500],P3[500],Y2,Y4;
miracl *mip=&precision;
BOOL escape,search,fout,gotI,gotA,gotB,atkin;
ZZn j,g,qb,qc,delta,el;
ZZn EB,EA,T,T1,T3,A2,A4,AZ,AW;
int Base;
argv++; argc--;
if (argc<1)
{
cout << "Incorrect Usage" << endl;
cout << "Program finds the number of points (NP) on an Elliptic curve" << endl;
cout << "which is defined over the Galois field GF(P), P a prime" << endl;
cout << "The Elliptic Curve has the equation Y^2 = X^3 + AX + B mod P" << endl;
cout << "(Or use flag -E for Inverted Edwards coordinates X^2+AY^2=X^2.Y^2+B mod P)" << endl;
cout << "sea <A> <B> <-i file>" << endl;
cout << "where the input file contains pre-processed modular polynomials" << endl;
cout << "for a particular prime modulus P" << endl;
cout << "e.g. sea -3 35317045537 -i mueller.pol" << endl;
cout << "To input A and B in Hex, precede with -h" << endl;
cout << "To output to a file, use flag -o <filename>" << endl;
cout << "To observe Atkin prime processing, use flag -a" << endl;
cout << "NOTE: Atkin prime information is not currently used" << endl;
cout << "To search for NP prime, incrementing B, use flag -s" << endl;
cout << "(For Edwards curve the search is for NP=4*prime)" << endl;
cout << "\nFreeware from Certivox, Dublin, Ireland" << endl;
cout << "Full C++ source code and MIRACL multiprecision library available" << endl;
cout << "email mscott@indigo.ie" << endl;
return 0;
}
ip=0;
gprime(10000); // generate small primes < 1000
search=fout=gotI=gotA=gotB=atkin=FALSE;
a=0; b=0;
// Interpret command line
Base=10;
while (ip<argc)
{
if (!fout && strcmp(argv[ip],"-o")==0)
{
ip++;
if (ip<argc)
{
fout=TRUE;
ofile.open(argv[ip++]);
continue;
}
else
{
cout << "Error in command line" << endl;
return 0;
}
}
if (!gotI && strcmp(argv[ip],"-i")==0)
{
ip++;
if (ip<argc)
{
gotI=TRUE;
mueller.open(argv[ip],ios::in);
if (!mueller)
{
cout << "input file " << argv[ip] << " could not be opened" << endl;
return 0;
}
ip++;
continue;
}
else
{
cout << "Error in command line" << endl;
return 0;
}
}
if (strcmp(argv[ip],"-s")==0)
{
ip++;
search=TRUE;
continue;
}
if (strcmp(argv[ip],"-a")==0)
{
ip++;
atkin=TRUE;
continue;
}
if (strcmp(argv[ip],"-h")==0)
{
ip++;
Base=16;
continue;
}
if (strcmp(argv[ip],"-E")==0)
{
ip++;
Edwards=TRUE;
continue;
}
if (!gotA)
{
mip->IOBASE=Base;
a=argv[ip++];
mip->IOBASE=10;
gotA=TRUE;
continue;
}
if (!gotB)
{
mip->IOBASE=Base;
b=argv[ip++];
mip->IOBASE=10;
gotB=TRUE;
continue;
}
cout << "Error in command line" << endl;
return 0;
}
if (!gotI || !gotA || !gotB)
{
cout << "Error in command line" << endl;
return 0;
}
// get prime modulus from .pol file
mueller >> p;
pbits=bits(p);
if (pbits<64)
{
cout << "Prime modulus too small for this program!" << endl;
cout << "Use SCHOOF program (ftp://ftp.compapp.dcu.ie/pub/crypto/schoof.exe)" << endl;
exit(0);
}
cout << "P= " << p << endl;
cout << "P mod 24 = " << p%24 << endl;
cout << "P is " << pbits << " bits long" << endl;
cout << "Reading in pre-processed Modular Polynomials... " << endl;
//
// read in all pre-processed bivariate modular polynomials
//
modulo(p); // set modulus
l[0]=2;
max=0;
for (i=1;;i++)
{
mueller >> lp;
if (mueller.eof()) break;
max=i;
l[i]=lp;
cout << setw(3) << lp << flush;
posXY=NULL;
Gl[i].clear();
forever
{
mueller >> c >> nx >> ny;
posXY=Gl[i].addterm((ZZn)c,nx,ny,posXY);
if (nx==0 && ny==0) break;
}
cout << "\b\b\b" << flush;
}
mueller.close();
// loop for "-s" search option
forever {
fft_reset(); // reset FFT tables
if (Edwards)
{
modulo(p);
EB=b;
EA=a;
AZ=(ZZn)1/(EA-EB);
A2=2*(EA+EB)/(EA-EB);
A4=1; AW=1;
AW*=AZ; A2*=AZ; A4*=AZ;
A4*=AW;
T=4*A2;
T1=3*T;
T3=18*36*(2*A4);
A=T3-3*T1*T1;
B=-T1*T3+2*T1*T1*T1;
ecurve((Big)A,(Big)B,p,MR_AFFINE); // initialise Elliptic Curve
}
else
{
ecurve(a,b,p,MR_AFFINE); // initialise Elliptic Curve
A=a;
B=b;
}
// The elliptic curve as a Polynomial
Y2=0;
Y2.addterm(B,0);
Y2.addterm(A,1);
Y2.addterm((ZZn)1,3);
Y4=Y2*Y2;
cout << "Counting the number of points (NP) on the curve" << endl;
if (Edwards)
{
cout << "X^2+" << EA << "*Y^2=X^2*Y^2+" << EB << endl;
cout << "Equivalent to Weierstrass form" << endl;
}
cout << "y^2= " << Y2 << " mod " << p << endl;
delta=-16*(4*A*A*A+27*B*B);
if (delta==0)
{
cout << "Not Allowed! 4A^3+27B^2 = 0" << endl;
if (search) {b+=1; continue; }
else return 0;
}
// Calculate j-invariant
j=(-1728*64*A*A*A)/delta;
if (j==0 || j==1728)
{
cout << "Not Allowed! j-invariant = 0 or 1728" << endl;
if (search) {b+=1; continue; }
else return 0;
}
// Finding the order modulo 2
// If GCD(X^P-X,X^3+AX+B) == 1 , trace=1 mod 2, else trace=0 mod 2
XX=0;
XX.addterm((ZZn)1,1);
YY=0;
YY.addterm((ZZn)-1,0); // Point (X,-Y)
setmod(Y2);
XP=pow(XX,p);
G=gcd(XP-XX);
parity=0;
if (isone(G)) parity=1;
cout << "NP mod 2 = " << (p+1-parity)%2;
if ((p+1-parity)%2==0)
{
cout << " ***" << endl;
if (search && !Edwards) {b+=1; continue; }
}
else cout << endl;
nl=0;
accum=1; // accumulated product of good primes
Poly zero;
PolyMod one,XT,YT,ZT,XL,YL,ZL,ZL2,ZT2;
one=1; // polynomial = 1
zero=0; // polynomial = 0
PolyXY dGx,dGy,dGxx,dGxy,dGyy;
ZZn E0b,E0bd,E2bs,E4b,E6b,Dg,Dj,Dgd,Djd,Dgs,Djs,jl,jld,p1,jd;
ZZn E4bl,E6bl,deltal,atilde,btilde,gd,f,fd,s,Eg,Ej,Exy;
int r,v,ld,ld1,discrim;
ZZn M,cf[500],cft[500],ad,K,RF;
Poly Fl,T,WP[500],H,X,Y,R;
term *pos;
E4b=-(A/3);
E6b=-(B/2);
delta=(E4b*E4b*E4b-E6b*E6b)/1728;
//
// find out how many bits we are going to need
// before Kangaroos can take over
//
first=5;
sl[0]=3; sl[1]=5; sl[2]=7; sl[3]=8; sl[4]=9; sl[5]=0; // do low prime powers
SCHP=9;
if (pbits<=256) d=pow((Big)2,64);
else d=pow((Big)2,72); // kangaroos do more work
d=sqrt(p/d);
escape=FALSE;
// Calculate Divisor Polynomials for small primes - Schoof 1985 p.485
// Set the first few by hand....
P[1]=1; P[2]=2; P[3]=0; P[4]=0;
P2[1]=1; P3[1]=1;
P2[2]=P[2]*P[2];
P3[2]=P2[2]*P[2];
P[3].addterm(-(A*A),0); P[3].addterm(12*B,1);
P[3].addterm(6*A,2) ; P[3].addterm((ZZn)3,4);
P2[3]=P[3]*P[3];
P3[3]=P2[3]*P[3];
P[4].addterm((ZZn)(-4)*(8*B*B+A*A*A),0);
P[4].addterm((ZZn)(-16)*(A*B),1);
P[4].addterm((ZZn)(-20)*(A*A),2);
P[4].addterm((ZZn)80*B,3);
P[4].addterm((ZZn)20*A,4);
P[4].addterm((ZZn)4,6);
P2[4]=P[4]*P[4];
P3[4]=P2[4]*P[4];
// generation of Divisor polynomials
// See Schoof p. 485
for (jj=5;jj<=SCHP+1;jj++)
{ // different for even and odd
if (jj%2==1)
{
n=(jj-1)/2;
if (n%2==0)
P[jj]=P[n+2]*P3[n]*Y4-P3[n+1]*P[n-1];
else
P[jj]=P[n+2]*P3[n]-Y4*P3[n+1]*P[n-1];
}
else
{
n=jj/2;
P[jj]=P[n]*(P[n+2]*P2[n-1]-P[n-2]*P2[n+1])/(ZZn)2;
}
if (jj <= 1+(SCHP+1)/2)
{ // precalculate for later
P2[jj]=P[jj]*P[jj];
P3[jj]=P2[jj]*P[jj];
}
}
//
// Schoof's original method for small primes
//
for (i=0;;i++)
{
lp=sl[i];
if (lp==0) break;
if (lp>=first)
{
good[nl]=lp;
accum*=lp;
}
k=p%lp;
setmod(P[lp]);
MY2=Y2;
// These next are time-consuming calculations of X^P, X^(P*P), Y^P and Y^(P*P)
cout << "X^P " << flush;
XP=pow(XX,p);
cout << "\b\b\b\bY^P " << flush;
YP=pow(MY2,(p-1)/2);
cout << "\b\b\b\bX^PP" << flush;
XPP=compose(XP,XP); // this is faster
cout << "\b\b\b\bY^PP" << flush;
YPP=YP*compose(YP,XP);
cout << "\b\b\b\b";
PolyMod Pk,P2k,PkP1,PkM1,PkP2;
Pk=P[k]; PkP1=P[k+1]; PkM1=P[k-1]; PkP2=P[k+2];
P2k=(Pk*Pk);
//
// This is Schoof's algorithm, stripped to its bare essentials
//
// Now looking for the value of tau which satisfies
// (X^(P*P),Y^(P*P)) + k.(X,Y) = tau.(X^P,Y^P)
//
// Note that (X,Y) are rational polynomial expressions for points on
// an elliptic curve, so "+" means elliptic curve point addition
//
// k.(X,Y) can be found directly from Divisor polynomials
// Schoof Prop (2.2)
//
// Points are converted to projective (X,Y,Z) form
// This is faster (x2). Observe that (X/Z^2,Y/Z^3,1) is the same
// point in projective co-ordinates as (X,Y,Z)
//
if (k%2==0)
{
XT=XX*MY2*P2k-PkM1*PkP1;
YT=(PkP2*PkM1*PkM1-P[k-2]*PkP1*PkP1)/4;
XT*=MY2; // fix up, so that Y has implicit y multiplier
YT*=MY2; // rather than Z
ZT=MY2*Pk;
}
else
{
XT=(XX*P2k-MY2*PkM1*PkP1);
if (k==1) YT=(PkP2*PkM1*PkM1+PkP1*PkP1)/4;
else YT=(PkP2*PkM1*PkM1-P[k-2]*PkP1*PkP1)/4;
ZT=Pk;
}
elliptic_add(XT,YT,ZT,XPP,YPP);
//
// Test for Schoof's case 1 - LHS (XT,YT,ZT) is point at infinity
//
cout << "NP mod " << lp << " = " << flush;
if (iszero(ZT))
{ // Is it zero point? (XPP,YPP) = - K(X,Y)
if (lp>=first) t[nl++]=0;
cout << setw(3) << (p+1)%lp;
if ((p+1)%lp==0)
{
cout << " ***" << endl;
if (search && (!Edwards || lp!=4)) {escape=TRUE; break;}
}
else cout << endl;
continue;
}
//
// Now keep finding tau.(X^P,Y^P), until equality is detected
// This is very simple!
//
XL=XP;
YL=YP;
ZL=1;
ZT2=ZT*ZT;
for (tau=1;tau<=(lp/2);tau++)
{
cout << setw(3) << (p+1-tau)%lp << flush;
ZL2=ZL*ZL;
if (iszero(XT*ZL2-ZT2*XL)) // LHS == RHS??
{ // LHS = RHS
if (!iszero(YT*ZL2*ZL-YL*ZT*ZT2))
{ // point doubled - change sign
tau=lp-tau;
cout << "\b\b\b";
cout << setw(3) << (p+1-tau)%lp << flush;
}
if (lp>=first) t[nl++]=tau;
if ((p+1-tau)%lp==0)
{
cout << " ***" << endl;
if (search && (!Edwards || lp!=4)) escape=TRUE;
}
else cout << endl;
break;
}
elliptic_add(XL,YL,ZL,XP,YP);
cout << "\b\b\b";
}
if (escape) break;
}
if (!escape) for (i=1;accum<=d;i++)
{
if (i>max)
{
cout << "WARNING: Ran out of Modular Polynomials!" << endl;
break;
}
lp=l[i];
if (lp<=SCHP) continue;
k=p%lp;
for (is=1;;is++)
if (is*(lp-1)%12==0) break;
el=lp;
s=is;
// Get next Modular Polynomial
MP=Gl[i];
// Evaluate bivariate polynomial at Y=j-invariant
// and use as polynomial modulus
F=MP.F(j);
setmod(F);
cout << setw(3) << lp << flush;
XP=pow(XX,p);
//
// Determine "Splitting type"
//
cout << "\b\b\bGCD" << flush;
G=gcd(XP-XX);
if (degree(G)==lp+1)
{
cout << "\b\b\b" << flush;
continue; // pathological case
}
if (degree(G)==0) // Atkin Prime
{
if (!atkin && lp>100) // Don't process large Atkin Primes
{
cout << "\b\b\b" << flush;
continue;
}
BOOL useful=FALSE;
cout << "\b\b\b" << flush;
cout << "ATK" << flush;
PolyMod u[20];
int max_r,lim=1;
u[0]=XP;
u[1]=compose(u[0],u[0]);
//
// The code for processing Atkin Primes is in here, but currently largely
// unused. However the simplest case is used, as it suggests only one
// value for NP mod lp, and so can be used just like an Elkies prime
//
//
if (atkin) max_r=lp+1;
else max_r=2;
for (r=2;r<=max_r;r++)
{
PolyMod C;
int kk,m;
BOOL first;
if ((lp+1)%r!=0) continue; // only keep good ones!
v=jac(k,lp); // check Schoof Prop. 6.3
jj=(lp+1)/r;
if (jj%2==0 && v==(-1)) continue;
if (jj%2==1 && v==1) continue;
// if (phi(r)>8) continue; // > 8 candidates
// if (lp<30 && phi(r)>2) continue;
// if (lp<60 && phi(r)>4) continue;
kk=r; m=0;
first=TRUE;
//
// Right-to-Left Power Composition - find X^(P^r)
//
forever
{
if (kk%2!=0)
{
if (first) C=u[m];
else C=compose(u[m],C);
first=FALSE;
}
kk/=2;
if (kk==0) break;
m++;
if (m>lim)
{ // remember them for next time
u[m]=compose(u[m-1],u[m-1]);
lim=m;
}
}
if (iszero(C-XX))
{ // found splitting type
useful=TRUE;
break;
}
}
cout << "\b\b\b" << flush;
if (!useful) continue;
cout << "NP mod " << lp << " = " << flush;
int a,b,candidates,gx,gy,ord,qnr=2;
BOOL gen;
while (jac(qnr,lp)!=(-1)) qnr++;
//
// [4] Algorithm VII.4 - find a generator of F(lp^2)
//
ord=lp*lp-1;
gy=1;
for (gx=1;gx<lp;gx++)
{
gen=TRUE;
for (jj=2;jj<=ord/2;jj++)
{
if (ord%jj!=0) continue;
powquad(lp,qnr,gx,gy,ord/jj,a,b);
if (a==1 && b==0) {gen=FALSE; break;}
}
if (gen) break;
}
//
// (gx,gy) is a generator
//
candidates=0;
cout << setw(3);
for (jj=1;jj<r;jj++)
{
if (jj>1 && igcd(jj,r)!=1) continue;
powquad(lp,qnr,gx,gy,jj*ord/r,a,b);
tau=((a+1)*k*(int)invers(2,lp))%lp;
if (tau==0)
{ // r must be 2 - I can make use of this!
// Its an Atkin prime, but only one possibility
candidates++;
cout << (p+1)%lp << flush;
if ((p+1)%lp==0)
{
cout << " ***" << endl;
if (search && (!Edwards || lp!=4)) escape=TRUE;
}
else cout << endl;
good[nl]=lp;
t[nl]=tau;
nl++;
accum*=lp;
break;
}
else if (jac(tau,lp)==1)
{
candidates+=2;
tau=sqrmp(tau,lp);
tau=(2*tau)%lp;
if (candidates==phi(r))
{
cout << (p+1-tau)%lp << " or " << (p+1+tau)%lp << endl;
break;
}
else cout << (p+1-tau)%lp << "," << (p+1+tau)%lp << "," << flush;
}
}
if (escape) break;
continue;
}
//
// Good Elkies prime - so use it!
//
// First solve quadratic for a root
//
if (degree(G)==1)
{
discrim=0;
g=-G.coeff(0); // Elkies Prime, one root, (2 possibilites)
}
else // degree(G)==2
{ // Elkies Prime, two roots
discrim=1;
qb=G.coeff(1);
qc=G.coeff(0);
g=sqrt(qb*qb-4*qc);
g=(-qb-g)/2; // pick either one
}
cout << "\b\b\bELK" << flush;
//
// Mueller's procedure for finding the atilde, btilde and p1
// parameters of the isogenous curve
// 3. page 111
// 4. page 131-133
// First we need partial differentials of bivariate Modular Polynomial
//
dGx=diff_dx(MP);
dGy=diff_dy(MP);
dGxx=diff_dx(dGx);
dGxy=diff_dx(dGy);
dGyy=diff_dy(dGy);
Eg=dGx.F(g,j); // Evaluated at (g,j)
Ej=dGy.F(g,j);
Exy=dGxy.F(g,j);
Dg=g*Eg;
Dj=j*Ej;
deltal=delta*pow(g,12/is)/pow(el,12);
if (Dj==0)
{
E4bl=E4b/(el*el);
atilde=-3*pow(el,4)*E4bl;
jl=pow(E4bl,3)/deltal;
btilde=2*pow(el,6)*sqrt((jl-1728)*deltal);
p1=0;
}
else
{
E2bs=(-12*E6b*Dj)/(s*E4b*Dg);
gd=-(s/12)*E2bs*g;
jd=-E4b*E4b*E6b/delta;
E0b=E6b/(E4b*E2bs);
Dgd=gd*Eg+g*(gd*dGxx.F(g,j)+jd*Exy);
Djd=jd*Ej+j*(jd*dGyy.F(g,j)+gd*Exy);
E0bd=((-s*Dgd)/12-E0b*Djd)/Dj;
E4bl=(E4b-E2bs*(12*E0bd/E0b+6*E4b*E4b/E6b-4*E6b/E4b)+E2bs*E2bs)/(el*el);
jl=pow(E4bl,3)/deltal;
f=pow(el,is)/g; fd=s*E2bs*f/12;
Dgs=dGx.F(f,jl);
Djs=dGy.F(f,jl);
jld=-fd*Dgs/(el*Djs);
E6bl=-E4bl*jld/jl;
atilde=-3*pow(el,4)*E4bl;
btilde=-2*pow(el,6)*E6bl;
p1=-el*E2bs/2;
}
//
// Find factor of Division Polynomial from atilde, btilde and p1
// Here we follow 3. p 116
// Polynomials have been modified s.t x=z^2
//
// Note that all Polynomials can be reduced mod x^(d+1),
// where d=(lp-1)/2, using modxn() function
//
cout << "\b\b\bFAC" << flush;
ld=(lp-1)/2;
ld1=(lp-3)/2;
get_ck(ld1,A,B,cf);
WP[1]=1;
pos=NULL;
for (k=ld1;k>0;k--)
pos=WP[1].addterm(cf[k],k+1,pos);
for (v=2;v<=ld;v++)
WP[v]=modxn(WP[v-1]*WP[1],ld+1);
//
// WPv have understood multiplier x^-v
//
get_ck(ld1,atilde,btilde,cft);
Y=0;
pos=NULL;
for (k=ld1;k>0;k--)
pos=Y.addterm((lp*cf[k]-cft[k])/(ZZn)((2*k+1)*(2*k+2)),k+1,pos);
Y.addterm(-p1,1,pos);
RF=1;
H=1;
X=1;
for (r=1;r<=ld;r++)
{
X=modxn(X*Y,ld+1);
RF*=r;
H+=(X/RF);
}
//
// H has understood multiplier x^-d
//
ad=1;
Fl=0;
pos=Fl.addterm(ad,ld);
for (v=ld-1;v>=0;v--)
{
H-=ad*WP[v+1];
H=divxn(H,1);
ad=H.min();
pos=Fl.addterm(ad,v,pos);
}
setmod(Fl);
MY2=Y2;
MY4=Y4;
//
// Only the Y-coordinate is calculated. No need for X^P !
//
cout << "\b\b\bY^P" << flush;
YP=pow(MY2,(p-1)/2);
cout << "\b\b\b";
// Calculate Divisor Polynomials for small primes - Schoof 1985 p.485
// This time mod the new (small) modulus Fl
// Set the first few by hand....
PolyMod Pf[300],P2f[300],P3f[300];
Pf[0]=0; Pf[1]=1; Pf[2]=2; Pf[3]=0; Pf[4]=0;
P2f[1]=1; P3f[1]=1;
P2f[2]=Pf[2]*Pf[2];
P3f[2]=P2f[2]*Pf[2];
Pf[3].addterm(-(A*A),0); Pf[3].addterm(12*B,1);
Pf[3].addterm(6*A,2) ; Pf[3].addterm((ZZn)3,4);
P2f[3]=Pf[3]*Pf[3];
P3f[3]=P2f[3]*Pf[3];
Pf[4].addterm((ZZn)(-4)*(8*B*B+A*A*A),0);
Pf[4].addterm((ZZn)(-16)*(A*B),1);
Pf[4].addterm((ZZn)(-20)*(A*A),2);
Pf[4].addterm((ZZn)80*B,3);
Pf[4].addterm((ZZn)20*A,4);
Pf[4].addterm((ZZn)4,6);
P2f[4]=Pf[4]*Pf[4];
P3f[4]=P2f[4]*Pf[4];
lower=5;
//
// Now looking for value of lambda which satisfies
// (X^P,Y^P) = lambda.(XX,YY).
// 3. Page 118, Algorithm 7.9
//
// Note that it appears to be sufficient to only compare the Y coordinates (!?)
// For a justification see page 120 of 3.
// Thank you SYSTRAN translation service! (www.altavista.com)
//
good[nl]=lp;
cout << "NP mod " << lp << " = " << flush;
for (lambda=1;lambda<=(lp-1)/2;lambda++)
{
int res=0;
PolyMod Ry,Ty;
tau=(lambda+invers(lambda,lp)*p)%lp;
k=(lp+tau*tau-(4*p)%lp)%lp;
if (jac(k,lp)!=discrim) continue;
//
// Possible values of tau could be eliminated here by an application of
// Atkin's algorithm....
//
cout << setw(3) << (p+1-tau)%lp << flush;
// This "loop" is usually executed just once
for (jj=lower;jj<=lambda+2;jj++)
{ // different for even and odd
if (jj%2==1) // 2 mod-muls
{
n=(jj-1)/2;
if (n%2==0)
Pf[jj]=Pf[n+2]*P3f[n]*MY4-P3f[n+1]*Pf[n-1];
else
Pf[jj]=Pf[n+2]*P3f[n]-MY4*P3f[n+1]*Pf[n-1];
}
else // 3 mod-muls
{
n=jj/2;
Pf[jj]=Pf[n]*(Pf[n+2]*P2f[n-1]-Pf[n-2]*P2f[n+1])/(ZZn)2;
}
P2f[jj]=Pf[jj]*Pf[jj]; // square
P3f[jj]=P2f[jj]*Pf[jj]; // cube
}
if (lambda+3>lower) lower=lambda+3;
// compare Y-coordinates - 3 polynomial mod-muls required
if (lambda%2==0)
{
Ry=(Pf[lambda+2]*P2f[lambda-1]-Pf[lambda-2]*P2f[lambda+1])/4;
Ty=MY4*YP*P3f[lambda];
}
else
{
if (lambda==1) Ry=(Pf[lambda+2]*P2f[lambda-1]+P2f[lambda+1])/4;
else Ry=(Pf[lambda+2]*P2f[lambda-1]-Pf[lambda-2]*P2f[lambda+1])/4;
Ty=YP*P3f[lambda];
}
if (iszero(Ty-Ry)) res=1;
if (iszero(Ty+Ry)) res=2;
if (res!=0)
{ // has it doubled, or become point at infinity?
if (res==2)
{ // it doubled - wrong sign
tau=(lp-tau)%lp;
cout << "\b\b\b";
cout << setw(3) << (p+1-tau)%lp << flush;
}
t[nl]=tau;
if ((p+1-tau)%lp==0)
{
cout << " ***" << endl;
if (search && (!Edwards || lp!=4)) escape=TRUE;
}
else cout << endl;
break;
}
cout << "\b\b\b";
}
nl++;
accum*=lp;
if (escape) break;
}
Modulus.clear();
if (escape) {b+=1; continue;}
Crt CRT(nl,good);
Big order,ordermod;
ordermod=accum;
order=(p+1-CRT.eval(t))%ordermod; // get order mod product of primes
nrp=kangaroo(p,order,ordermod);
if (Edwards)
{
if (!prime(nrp/4) && search) {b+=1; continue; }
else break;
}
else
{
if (!prime(nrp) && search) {b+=1; continue; }
else break;
}
}
if (fout)
{
ECn P;
ofile << bits(p) << endl;
mip->IOBASE=16;
ofile << p << endl;
ofile << a << endl;
ofile << b << endl;
// generate a random point on the curve
// point will be of prime order for "ideal" curve, otherwise any point
if (!Edwards)
{
do {
x=rand(p);
} while (!P.set(x,x));
P.get(x,y);
ofile << nrp << endl;
}
else
{
ZZn X,Y,Z,R,TA,TB,TC,TD,TE;
forever
{
X=randn();
R=(X*X-EB)/(X*X-EA);
if (!qr(R))continue;
Y=sqrt(R);
break;
}
Z=1;
// double point twice (4*P)
for (i=0;i<2;i++)
{
TA = X*X;
TB = Y*Y;
TC = TA+TB;
TD = TA-TB;
TE = (X+Y)*(X+Y)-TC;
X = TC*TD;
Y = TE*(TC-2*EB*Z*Z);
Z = TD*TE;
}
X/=Z;
Y/=Z;
x=X;
y=Y;
ofile << nrp/4 << endl;
}
ofile << x << endl;
ofile << y << endl;
mip->IOBASE=10;
}
if (p==nrp)
{
cout << "WARNING: Curve is anomalous" << endl;
return 0;
}
// check MOV condition for curves of Cryptographic interest
d=1;
for (i=0;i<50;i++)
{
d=modmult(d,p,nrp);
if (d==1)
{
cout << "WARNING: Curve fails MOV condition" << endl;
return 0;
}
}
return 0;
}