227 lines
7.3 KiB
C
227 lines
7.3 KiB
C
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
* MIRACL flash roots and powers
|
|
* mrflsh1.c
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "miracl.h"
|
|
|
|
#ifdef MR_FLASH
|
|
|
|
static int quad(_MIPD_ big w,int n)
|
|
{ /* generator for C.F. of square root of small integer */
|
|
int t;
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
if (n==0)
|
|
{
|
|
mr_mip->oldn=(-1);
|
|
mr_mip->b=2*mr_mip->RD;
|
|
mr_mip->c=mr_mip->b;
|
|
mr_mip->a=1;
|
|
mr_mip->d=mr_mip->RS;
|
|
mr_mip->r=mr_mip->RD;
|
|
if (mr_mip->r>=MR_TOOBIG)
|
|
{
|
|
convert(_MIPP_ mr_mip->r,w);
|
|
return MR_TOOBIG;
|
|
}
|
|
return (mr_mip->r);
|
|
}
|
|
else if (n==mr_mip->oldn) return (mr_mip->r);
|
|
t=mr_mip->a;
|
|
mr_mip->a=mr_mip->r*(mr_mip->c-mr_mip->b)+mr_mip->d;
|
|
mr_mip->d=t;
|
|
mr_mip->r=mr_mip->b/mr_mip->a;
|
|
mr_mip->c=mr_mip->b;
|
|
mr_mip->b=2*mr_mip->RD-mr_mip->b%mr_mip->a;
|
|
mr_mip->oldn=n;
|
|
if (mr_mip->r>=MR_TOOBIG)
|
|
{
|
|
convert(_MIPP_ mr_mip->r,w);
|
|
return (MR_TOOBIG);
|
|
}
|
|
return mr_mip->r;
|
|
}
|
|
|
|
void fpower(_MIPD_ flash x,int n,flash w)
|
|
{ /* raise floating-slash number to integer power w=x^n */
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
copy(x,mr_mip->w8);
|
|
zero(w);
|
|
if (mr_mip->ERNUM || size(mr_mip->w8)==0) return;
|
|
convert(_MIPP_ 1,w);
|
|
if (n==0) return;
|
|
|
|
MR_IN(51)
|
|
|
|
if (n<0)
|
|
{
|
|
n=(-n);
|
|
frecip(_MIPP_ mr_mip->w8,mr_mip->w8);
|
|
}
|
|
if (n==1)
|
|
{
|
|
copy(mr_mip->w8,w);
|
|
MR_OUT
|
|
return;
|
|
}
|
|
forever
|
|
{
|
|
if (n%2!=0) fmul(_MIPP_ w,mr_mip->w8,w);
|
|
n/=2;
|
|
if (mr_mip->ERNUM || n==0) break;
|
|
fmul(_MIPP_ mr_mip->w8,mr_mip->w8,mr_mip->w8);
|
|
}
|
|
MR_OUT
|
|
}
|
|
|
|
BOOL froot(_MIPD_ flash x,int n,flash w)
|
|
{ /* extract nth root of x - w=x^(1/n) using Newtons method */
|
|
BOOL minus,rn,rm,hack;
|
|
int nm,dn,s,op[5];
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
copy(x,w);
|
|
if (mr_mip->ERNUM || n==1) return TRUE;
|
|
if (n==(-1))
|
|
{
|
|
frecip(_MIPP_ w,w);
|
|
return TRUE;
|
|
}
|
|
|
|
MR_IN(52)
|
|
|
|
minus=FALSE;
|
|
if (n<0)
|
|
{
|
|
minus=TRUE;
|
|
n=(-n);
|
|
}
|
|
s=exsign(w);
|
|
if (n%2==0 && s==MINUS)
|
|
{
|
|
mr_berror(_MIPP_ MR_ERR_NEG_ROOT);
|
|
MR_OUT
|
|
return FALSE;
|
|
}
|
|
insign(PLUS,w);
|
|
numer(_MIPP_ w,mr_mip->w8);
|
|
denom(_MIPP_ w,mr_mip->w9);
|
|
rn=nroot(_MIPP_ mr_mip->w8,n,mr_mip->w8);
|
|
rm=nroot(_MIPP_ mr_mip->w9,n,mr_mip->w9);
|
|
if (rn && rm)
|
|
{
|
|
fpack(_MIPP_ mr_mip->w8,mr_mip->w9,w);
|
|
if (minus) frecip(_MIPP_ w,w);
|
|
insign(s,w);
|
|
MR_OUT
|
|
return TRUE;
|
|
}
|
|
nm=size(mr_mip->w8);
|
|
dn=size(mr_mip->w9);
|
|
if (n==2 && ((nm<MR_TOOBIG) || rn) && ((dn<MR_TOOBIG) || rm))
|
|
{
|
|
if (!rn && nm<MR_TOOBIG)
|
|
{
|
|
multiply(_MIPP_ mr_mip->w8,mr_mip->w8,mr_mip->w8);
|
|
numer(_MIPP_ w,mr_mip->w7);
|
|
subtract(_MIPP_ mr_mip->w7,mr_mip->w8,mr_mip->w8);
|
|
mr_mip->RS=(int)(mr_mip->w8->w[0]+mr_mip->base*mr_mip->w8->w[1]);
|
|
mr_mip->RD=nm;
|
|
build(_MIPP_ mr_mip->w8,quad);
|
|
}
|
|
if (!rm && dn<MR_TOOBIG)
|
|
{
|
|
multiply(_MIPP_ mr_mip->w9,mr_mip->w9,mr_mip->w9);
|
|
denom(_MIPP_ w,mr_mip->w7);
|
|
subtract(_MIPP_ mr_mip->w7,mr_mip->w9,mr_mip->w9);
|
|
mr_mip->RS=(int)(mr_mip->w9->w[0]+mr_mip->base*mr_mip->w9->w[2]);
|
|
mr_mip->RD=dn;
|
|
build(_MIPP_ mr_mip->w9,quad);
|
|
}
|
|
if (size(mr_mip->w9)==1) copy(mr_mip->w8,w);
|
|
else fdiv(_MIPP_ mr_mip->w8,mr_mip->w9,w);
|
|
if (minus) frecip(_MIPP_ w,w);
|
|
insign(s,w);
|
|
MR_OUT
|
|
return FALSE;
|
|
}
|
|
hack=FALSE;
|
|
if (mr_lent(w)<=2)
|
|
{ /* for 'simple' w only */
|
|
hack=TRUE;
|
|
fpi(_MIPP_ mr_mip->pi);
|
|
fpmul(_MIPP_ mr_mip->pi,1,3,mr_mip->w10);
|
|
fpower(_MIPP_ mr_mip->w10,n,mr_mip->w10);
|
|
fmul(_MIPP_ w,mr_mip->w10,w);
|
|
}
|
|
op[0]=0x6C; /* set up for [(n-1).x+y]/n */
|
|
op[1]=n-1;
|
|
op[2]=1;
|
|
op[3]=n;
|
|
op[4]=0;
|
|
mr_mip->workprec=mr_mip->stprec;
|
|
dconv(_MIPP_ pow(fdsize(_MIPP_ w),1.0/(double)n),mr_mip->w10);
|
|
while (mr_mip->workprec!=mr_mip->nib)
|
|
{ /* Newtons iteration w10=(w/w10^(n-1)+(n-1)*w10)/n */
|
|
if (mr_mip->workprec<mr_mip->nib) mr_mip->workprec*=2;
|
|
if (mr_mip->workprec>=mr_mip->nib) mr_mip->workprec=mr_mip->nib;
|
|
else if (mr_mip->workprec*2>mr_mip->nib) mr_mip->workprec=(mr_mip->nib+1)/2;
|
|
fpower(_MIPP_ mr_mip->w10,n-1,mr_mip->w9);
|
|
fdiv(_MIPP_ w,mr_mip->w9,mr_mip->w9);
|
|
flop(_MIPP_ mr_mip->w10,mr_mip->w9,op,mr_mip->w10);
|
|
}
|
|
copy(mr_mip->w10,w);
|
|
op[0]=0x48;
|
|
op[1]=3;
|
|
op[3]=1;
|
|
op[2]=op[4]=0;
|
|
if (hack) flop(_MIPP_ w,mr_mip->pi,op,w);
|
|
if (minus) frecip(_MIPP_ w,w);
|
|
insign(s,w);
|
|
MR_OUT
|
|
return FALSE;
|
|
}
|
|
|
|
#endif
|
|
|