KGC_TEST/KGCAPP/3rdparty/miracl/include/zzn.h

220 lines
8.0 KiB
C++

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
*
* MIRACL C++ Header file zzn.h
*
* AUTHOR : M. Scott
*
* PURPOSE : Definition of class ZZn (Arithmetic mod n), using
* Montgomery's Method for modular multiplication
* NOTE : Must be used in conjunction with zzn.cpp
* The modulus n is always set dynamically (via the modulo()
* routine) - so beware the pitfalls implicit in declaring
* static or global ZZn's (which are initialised before n is
* set!). Uninitialised data is OK
*/
#ifndef ZZN_H
#define ZZN_H
#include "big.h"
/*
#ifdef ZZNS
#define MR_INIT_ZZN memset(mem,0,mr_big_reserve(1,ZZNS)); fn=(big)mirvar_mem_variable(mem,0,ZZNS);
#define MR_CLONE_ZZN(x) fn->len=x->len; for (int i=0;i<ZZNS;i++) fn->w[i]=x->w[i];
#define MR_ZERO_ZZN {fn->len=0; for (int i=0;i<ZZNS;i++) fn->w[i]=0;}
#else
#define MR_INIT_ZZN mem=(char *)memalloc(1); fn=(big)mirvar_mem(mem,0);
#define MR_CLONE_ZZN(x) copy(x,fn);
#define MR_ZERO_ZZN zero(fn);
#endif
*/
#ifdef ZZNS
#ifdef MR_COMBA
#define UZZNS ZZNS
#else
#define UZZNS ZZNS+1 // one extra required in case of carry overflow in addition
#endif
#endif
#ifdef ZZNS
#define MR_INIT_ZZN fn=&b; b.w=a; b.len=UZZNS;
#define MR_CLONE_ZZN(x) b.len=x->len; for (int i=0;i<UZZNS;i++) a[i]=x->w[i];
#define MR_ZERO_ZZN {b.len=0; for (int i=0;i<UZZNS;i++) a[i]=0;}
#else
#define MR_INIT_ZZN fn=mirvar(0);
#define MR_CLONE_ZZN(x) copy(x,fn);
#define MR_ZERO_ZZN zero(fn);
#endif
class ZZn
{
big fn;
#ifdef ZZNS
mr_small a[UZZNS];
bigtype b;
#endif
/*
#ifdef ZZNS
char mem[mr_big_reserve(1,ZZNS)];
#else
char *mem;
#endif
*/
public:
ZZn() {MR_INIT_ZZN MR_ZERO_ZZN}
ZZn(int i) {MR_INIT_ZZN if (i==0) MR_ZERO_ZZN else {convert(i,fn); nres(fn,fn);} }
ZZn(const Big& c) {MR_INIT_ZZN nres(c.getbig(),fn); } /* Big -> ZZn */
ZZn(big& c) {MR_INIT_ZZN MR_CLONE_ZZN(c);}
ZZn(const ZZn& c) {MR_INIT_ZZN MR_CLONE_ZZN(c.fn);}
ZZn(char* s) {MR_INIT_ZZN cinstr(fn,s); nres(fn,fn);}
ZZn& operator=(const ZZn& c) {MR_CLONE_ZZN(c.fn) return *this;}
ZZn& operator=(big c) {MR_CLONE_ZZN(c) return *this; }
ZZn& operator=(int i) {if (i==0) MR_ZERO_ZZN else {convert(i,fn); nres(fn,fn);} return *this;}
ZZn& operator=(char* s){cinstr(fn,s); nres(fn,fn); return *this;}
/* Use fast in-line code */
ZZn& operator++()
{nres_modadd(fn,get_mip()->one,fn);return *this;}
ZZn& operator--()
{nres_modsub(fn,get_mip()->one,fn);return *this;}
ZZn& operator+=(int i)
{ZZn inc=i; nres_modadd(fn,inc.fn,fn);return *this;}
ZZn& operator-=(int i)
{ZZn dec=i; nres_modsub(fn,dec.fn,fn); return *this;}
ZZn& operator+=(const ZZn& b)
{nres_modadd(fn,b.fn,fn); return *this;}
ZZn& operator-=(const ZZn& b)
{nres_modsub(fn,b.fn,fn); return *this;}
ZZn& operator*=(const ZZn& b)
{nres_modmult(fn,b.fn,fn); return *this;}
ZZn& operator*=(int i)
{nres_premult(fn,i,fn); return *this;}
ZZn& negate()
{nres_negate(fn,fn); return *this;}
BOOL iszero() const;
operator Big() {Big c; redc(fn,c.getbig()); return c;} /* ZZn -> Big */
friend big getbig(ZZn& z) {return z.fn;}
ZZn& operator/=(const ZZn& b) {nres_moddiv(fn,b.fn,fn); return *this;}
ZZn& operator/=(int);
friend ZZn operator-(const ZZn&);
friend ZZn operator+(const ZZn&,int);
friend ZZn operator+(int, const ZZn&);
friend ZZn operator+(const ZZn&, const ZZn&);
friend ZZn operator-(const ZZn&, int);
friend ZZn operator-(int, const ZZn&);
friend ZZn operator-(const ZZn&, const ZZn&);
friend ZZn operator*(const ZZn&,int);
friend ZZn operator*(int, const ZZn&);
friend ZZn operator*(const ZZn&, const ZZn&);
friend ZZn operator/(const ZZn&, int);
friend ZZn operator/(int, const ZZn&);
friend ZZn operator/(const ZZn&, const ZZn&);
friend BOOL operator==(const ZZn& b1,const ZZn& b2)
{ if (mr_compare(b1.fn,b2.fn)==0) return TRUE; else return FALSE;}
friend BOOL operator!=(const ZZn& b1,const ZZn& b2)
{ if (mr_compare(b1.fn,b2.fn)!=0) return TRUE; else return FALSE;}
friend ZZn one(void);
friend ZZn pow( const ZZn&, const Big&);
friend ZZn pow( const ZZn&,int);
friend ZZn powl(const ZZn&, const Big&);
friend ZZn pow( const ZZn&, const Big&, const ZZn&, const Big&);
friend ZZn pow( int,ZZn *,Big *);
friend int jacobi(const ZZn&);
#ifndef MR_NO_RAND
friend ZZn randn(void); // random number < modulus
#endif
friend BOOL qr(const ZZn&); // test for quadratic residue
friend BOOL qnr(const ZZn&); // test for quadratic non-residue
friend ZZn getA(void); // get A parameter of elliptic curve
friend ZZn getB(void); // get B parameter of elliptic curve
friend ZZn sqrt(const ZZn&); // only works if modulus is prime
friend ZZn luc( const ZZn& b1, const Big& b2, ZZn* b3=NULL)
{
ZZn z; if (b3!=NULL) nres_lucas(b1.fn,b2.getbig(),b3->fn,z.fn);
else nres_lucas(b1.fn,b2.getbig(),z.fn,z.fn);
return z;
}
//friend ZZn luc( const ZZn&, const Big&, ZZn* b3=NULL);
big getzzn(void) const;
#ifndef MR_NO_STANDARD_IO
friend ostream& operator<<(ostream&,const ZZn&);
#endif
~ZZn()
{
// MR_ZERO_ZZN // slower but safer
#ifndef ZZNS
mr_free(fn);
#endif
}
};
#ifndef MR_NO_RAND
extern ZZn randn(void);
#endif
extern ZZn getA(void);
extern ZZn getB(void);
extern ZZn one(void);
#endif