KGC_TEST/KGCAPP/3rdparty/miracl/source/curve/modpol.cpp

669 lines
17 KiB
C++

//
// Program to generate Modular Polynomials mod p, as required for fast
// implementations of the Schoof-Elkies-Atkins algorithm
// for counting points on an elliptic curve Y^2=X^3 + A.X + B mod p
//
// Implemented entirely from the description provided in:
// 1. "Distributed Computation of the number of points on an elliptic curve
// over a finite prime field", Buchmann, Mueller, & Shoup, SFB 124-TP D5
// Report 03/95, April 1995, Universitat des Saarlandes, and
// 2. "Counting the number of points on elliptic curves over finite fields
// of characteristic greater than three", Lehmann, Maurer, Mueller & Shoup,
// Proc. 1st Algorithmic Number Theory Symposium (ANTS), pp 60-70, 1994
//
// Both papers are available on the Web from Volker Mueller's home page
// www.informatik.th-darmstadt.de/TI/Mitarbeiter/vmueller.html
//
// Also strongly recommended is the book
//
// 3. "Elliptic Curves in Cryptography"
// by Blake, Seroussi and Smart, London Mathematical Society Lecture Note
// Series 265, Cambridge University Press. ISBN 0 521 65374 6
//
// The programs's output for each prime in the range is a bivariate polynomial
// in X and Y, which can optionally be stored to disk. Some informative output
// is generated just to convince you that it is still working, and to give an
// idea of progress.
//
// This program is a composite of the "mueller" and "process" applications.
// It generates the modular polynomials, pre-reduced wrt to a specified prime
// modulus. This may be the only feasible way to do it on a small computer
// system, for which the "mueller" application is too resource intensive.
//
// Although less memory intensive than "mueller", problems may still arise.
// See mueller.cpp for a description of the -s2, -s3 and -s6 flags
//
// .pol file format
// <modulus>,<prime>,<1st coef>,<1st power of X>,<1st power of Y>,<2nd coef>...
// Each polynomial ends wih zero powers of X and Y.
//
// For example
// modpol -d -f 2#512 0 500 -o test512.pol
//
// If appending to a file with the -a flag, make sure and use the same
// prime modulus as used to create the file originally - no check is made
//
// generates the test512.pol file directly, given the range 0 to 500 and
// using the first prime modulus it can find less than 2^512. This file can
// then be used directly with the "sea" application
//
#include <iostream>
#include <fstream>
#include <cstring>
#include <iomanip>
#include "ps_zzn.h" // power series class
using namespace std;
extern int psN; // power series are modulo x^psN
BOOL fout;
BOOL append;
Miracl precision=20;
ofstream mueller;
// Code to parse formula in command line
// This code isn't mine, but its public domain
// Shamefully I forget the source
//
// NOTE: It may be necessary on some platforms to change the operators * and #
//
#if defined(unix)
#define TIMES '.'
#define RAISE '^'
#else
#define TIMES '*'
#define RAISE '#'
#endif
Big tt;
static char *ss;
void eval_power (Big& oldn,Big& n,char op)
{
if (op) n=pow(oldn,toint(n)); // power(oldn,size(n),n,n);
}
void eval_product (Big& oldn,Big& n,char op)
{
switch (op)
{
case TIMES:
n*=oldn;
break;
case '/':
n=oldn/n;
break;
case '%':
n=oldn%n;
}
}
void eval_sum (Big& oldn,Big& n,char op)
{
switch (op)
{
case '+':
n+=oldn;
break;
case '-':
n=oldn-n;
}
}
void eval (void)
{
Big oldn[3];
Big n;
int i;
char oldop[3];
char op;
char minus;
for (i=0;i<3;i++)
{
oldop[i]=0;
}
LOOP:
while (*ss==' ')
ss++;
if (*ss=='-') /* Unary minus */
{
ss++;
minus=1;
}
else
minus=0;
while (*ss==' ')
ss++;
if (*ss=='(' || *ss=='[' || *ss=='{') /* Number is subexpression */
{
ss++;
eval ();
n=tt;
}
else /* Number is decimal value */
{
for (i=0;ss[i]>='0' && ss[i]<='9';i++)
;
if (!i) /* No digits found */
{
cout << "Error - invalid number" << endl;
exit (20);
}
op=ss[i];
ss[i]=0;
n=atoi(ss);
ss+=i;
*ss=op;
}
if (minus) n=-n;
do
op=*ss++;
while (op==' ');
if (op==0 || op==')' || op==']' || op=='}')
{
eval_power (oldn[2],n,oldop[2]);
eval_product (oldn[1],n,oldop[1]);
eval_sum (oldn[0],n,oldop[0]);
tt=n;
return;
}
else
{
if (op==RAISE)
{
eval_power (oldn[2],n,oldop[2]);
oldn[2]=n;
oldop[2]=RAISE;
}
else
{
if (op==TIMES || op=='/' || op=='%')
{
eval_power (oldn[2],n,oldop[2]);
oldop[2]=0;
eval_product (oldn[1],n,oldop[1]);
oldn[1]=n;
oldop[1]=op;
}
else
{
if (op=='+' || op=='-')
{
eval_power (oldn[2],n,oldop[2]);
oldop[2]=0;
eval_product (oldn[1],n,oldop[1]);
oldop[1]=0;
eval_sum (oldn[0],n,oldop[0]);
oldn[0]=n;
oldop[0]=op;
}
else /* Error - invalid operator */
{
cout << "Error - invalid operator" << endl;
exit (20);
}
}
}
}
goto LOOP;
}
//
// When summing the Zk^n 0<=k<L (1. page 3, top), most terms cancel out,
// leaving only every L-th term
//
Ps_ZZn phase(Ps_ZZn &z, int L,int off)
{ // Keep L times every L-th element in the Power Series
Ps_ZZn w;
term_ps_zzn *pos=NULL;
int i,k;
k=off+z.first();
for (i=off;i<psN;i+=L,k+=L)
{
pos=w.addterm(L*z.coeff(k),k,pos);
}
return w;
}
void mueller_pol(int L,int s)
{ // Calculate Modular Polynomial for prime L
// s is smallest int such that s*(L-1)/12 is integer
int i,j,n,v;
Ps_ZZn klein,flt,zlt,x,y,z,f,jlt[500],c[1000],ps[1000];
// First calculate v, and hence psN - number of terms in Power Series
// 2. page 5 1st para
cout << "preliminaries" << flush;
v=s*(L-1)/12;
psN=v+2;
//
// calculate Klein=j(tau) from its definition
// Numerator x...
//
// 1. page 2
//
for (n=1;n<psN;n++)
{
Ps_ZZn a,b,t;
a.addterm((ZZn)n*n*n,n); // a=n^3*x^n
b.addterm((ZZn)1,0);
b.addterm((ZZn)-1,n);
t=a/b;
x+=t;
}
x=(ZZn)240*x;
x.addterm((ZZn)1,0);
x=pow(x,3);
// Denominator y...
y=eta();
y=pow(y,24);
klein=x/y;
cout << "." << flush;
klein.divxn(1); // divides power series by x^parameter
psN*=L;
// cout << "psN= " << psN << endl;
klein=power(klein,L); // this substitutes x^L for x in the power series
cout << "." << flush;
// Find Fl(t), Numerator z= Dedekind eta function
// This has a simple repeating pattern of coefficients, and so costs nothing
// to calculate 1. page 2 bottom
z=eta();
// Denominator y=n(Lt)...
y=power(z,L);
y=(ZZn)1/y; // y has only psN/L terms.
cout << "." << flush;
z*=y; // z has psN terms
flt=pow(z,2*s); // ^2*s - expensive
cout << "." << flush;
flt.divxn(v); // times x^-v
ZZn w=pow((ZZn)L,s);
y=power(flt,L);
cout << "." << flush;
zlt=w/y; // l^s/Fl(lt) - cheap - psN/L terms in power series
cout << "." << endl;
y.clear();
x.clear();
ps[0]=L+1;
//
// Calculate Power Sums. Note that f and flt are very large objects
// with psN terms. Most other power series are in "compressed" form
// with "only" psN/L terms
//
// 1. page 3
//
cout << "Power Sum = " << flush;
z=1;
f=1;
for (i=1;i<=L+1;i++)
{
cout << setw(3) << i << flush;
f*=flt; // expensive. In place multiplication discourages C++
// from moving large objects about
z=z*zlt; // cheap
ps[i]=phase(f,L,(i*v)%L)+z;
cout << "\b\b\b" << flush;
}
cout << setw(3) << L+1 << endl;
f.clear();
z.clear();
flt.clear();
zlt.clear();
cout << "Coefficient = " << flush;
c[0]=1;
//
// Newton's Identities - Calculate coefficients from Power Sums
//
// from a Web page somewhere and 3. page 54
//
for (i=1;i<=L+1;i++)
{
cout << setw(3) << i << flush;
c[i]=0;
for (j=1;j<=i;j++)
c[i]+=(ps[j]*c[i-j]); // cheap, but lots of them
c[i]=(-c[i])/i;
cout << "\b\b\b" << flush;
}
cout << setw(3) << L+1 << endl;
for (i=0;i<=L+1;i++) ps[i].clear(); // reclaim space
//
// Get powers of j(Lt)^i, i=1 to v
// These will be needed to determine the exponent of Y in each
// coefficient of the Modular Polynomial
//
jlt[0]=1;
jlt[1]=klein;
for (i=2;i<=v;i++)
jlt[i]=jlt[i-1]*klein; // cheap
//
// Find Modular Polynomial, format it, and output
//
// 2. page 5, middle "Hl(X) = ..."
//
cout << "\nG" << L << "(X,Y) = X^" << L+1 ;
if (fout)
{
mueller << L << endl;
mueller << 1 << "\n" << L+1 << "\n" << 0 << endl;
}
for (i=1;i<=L+1;i++)
{
ZZn cf;
BOOL brackets,first;
first=TRUE;
brackets=FALSE;
z=c[i];
// idea is to reduce this to an integer
// by subtracting j(Lt)^k as necessary
// The power of k required is then
// the coefficient of Y^k in G(X,Y)
// The first coefficient of c[i] tells us which j(Lt)^k to try
if (z.first()!=0)
{
brackets=TRUE;
cout << "+(" ;
}
// coefficient may be a polynomial in Y
while (z.first()!=0)
{
int j=(-z.first()/L); // index into jlt
cf=z.coeff(z.first()); // get coefficient to be cancelled
if (fout) mueller << cf << "\n" << L+1-i << "\n" << j << endl;
if (cf==0) break;
z-=(jlt[j]*cf);
if (!first || !brackets) cout << "+";
first=FALSE;
if (cf==1) cout << "Y";
else cout << cf << "*Y";
if (j!=1) cout << "^" << j;
}
cf=z.coeff(0);
if (fout) mueller << cf << "\n" << L+1-i << "\n" << 0 << endl;
if (brackets)
{
cout << "+" << cf << ")*X";
if (i!=L) cout << "^" << L+1-i ;
}
else
{
if (i==L+1)
{
cout << "+" << cf;
continue;
}
if (cf!=0)
{
if (cf==1) cout << "+X";
else cout << "+" << cf << "*X";
if (i!=L) cout << "^" << L+1-i ;
}
}
// all other coefficients should now be zero
if (z.coeff(L)!=0)
{ // check next coefficient is zero
cout << "\n\n Sanity Check Failed " << endl;
exit(0);
}
}
for (i=0;i<=L+1;i++) c[i].clear(); // reclaim space
for (i=0;i<=v;i++) jlt[i].clear();
cout << endl;
fft_reset();
}
int main(int argc,char **argv)
{
Big p;
miracl *mip=get_mip();
int i,j,s,lo,hi,sp,ip,skip;
int primes[200];
BOOL dir,gotP,gothi,gotlo;
argv++; argc--;
int Base;
if (argc<1)
{
cout << "Incorrect usage" << endl;
cout << "Program generates Modular Polynomials, for use by fast Schoof-Elkies-Atkins" << endl;
cout << "program for counting points on an elliptic curve" << endl;
cout << "modpol <prime modulus P> <low number> <high number>" << endl;
cout << "OR" << endl;
cout << "modpol <formula for P> <low number> <high number>" << endl;
cout << "where the numbers define a range. The program will find the" << endl;
cout << "Modular Polynomials for primes in this range wrt the specified modulus" << endl;
cout << "To input P in Hex, precede with -h" << endl;
cout << "To search downwards for a prime, use flag -d" << endl;
cout << "NOTE: Program is both memory and time intensive" << endl;
cout << "To skip \"difficult\" primes, use -s2, -s3 or -s6" << endl;
cout << "where -s2 skips most and -s6 skips least" << endl;
cout << "To output polynomials to a file use flag -o <filename>" << endl;
#if defined(unix)
cout << "e.g. modpol -f 2^192-2^64-1 0 150 -o p192.pol" << endl;
#else
cout << "e.g. modpol -f 2#192-2#64-1 0 150 -o p192.pol" << endl;
#endif
cout << "Alternatively to append to a file use flag -a <filename>" << endl;
cout << "See source code file for details" << endl;
cout << "\nFreeware from Certivox, Dublin, Ireland" << endl;
cout << "Full C++ source code and MIRACL multiprecision library available" << endl;
cout << "email mscott@indigo.ie" << endl;
return 0;
}
if (argc<3)
{
cout << "Error in command line" << endl;
return 0;
}
ip=0;
skip=12;
fout=FALSE;
dir=gotP=gothi=gotlo=FALSE;
append=FALSE;
Base=10;
while (ip<argc)
{
if (!gotP && strcmp(argv[ip],"-f")==0)
{
ip++;
if (!gotP && ip<argc)
{
ss=argv[ip++];
tt=0;
eval();
p=tt;
gotP=TRUE;
continue;
}
else
{
cout << "Error in command line" << endl;
return 0;
}
}
if (strcmp(argv[ip],"-d")==0)
{
ip++;
dir=TRUE;
continue;
}
if (skip==12 && strcmp(argv[ip],"-s2")==0)
{
ip++;
skip=2;
continue;
}
if (skip==12 && strcmp(argv[ip],"-s3")==0)
{
ip++;
skip=3;
continue;
}
if (skip==12 && strcmp(argv[ip],"-s6")==0)
{
ip++;
skip=6;
continue;
}
if (!fout && strcmp(argv[ip],"-o")==0)
{
ip++;
if (ip<argc)
{
fout=TRUE;
append=FALSE;
mueller.open(argv[ip++]);
continue;
}
else
{
cout << "Error in command line" << endl;
return 0;
}
}
if (!fout && strcmp(argv[ip],"-a")==0)
{
ip++;
if (ip<argc)
{
fout=TRUE;
append=TRUE;
mueller.open(argv[ip++],ios::app);
continue;
}
else
{
cout << "Error in command line" << endl;
return 0;
}
}
if (strcmp(argv[ip],"-h")==0)
{
ip++;
Base=16;
continue;
}
if (!gotP)
{
mip->IOBASE=Base;
p=argv[ip++];
mip->IOBASE=10;
gotP=TRUE;
continue;
}
if (!gotlo)
{
lo=atoi(argv[ip++]);
gotlo=TRUE;
continue;
}
if (!gothi)
{
hi=atoi(argv[ip++]);
gothi=TRUE;
continue;
}
cout << "Error in command line" << endl;
return 0;
}
if (!gothi || !gotlo)
{
cout << "Error in command line" << endl;
return 0;
}
if (lo>hi || hi>1000)
{
cout << "Invalid range specified" << endl;
return 0;
}
gprime(1000); // get all primes < 1000
for (i=0;;i++)
{
sp=mip->PRIMES[i];
primes[i]=sp;
if (sp==0) break;
}
if (!prime(p))
{
int incr=0;
cout << "That number is not prime!" << endl;
if (dir)
{
cout << "Looking for next lower prime" << endl;
p-=1; incr++;
while (!prime(p)) { p-=1; incr++; }
cout << "Prime P = P-" << incr << endl;
}
else
{
cout << "Looking for next higher prime" << endl;
p+=1; incr++;
while (!prime(p)) { p+=1; incr++; }
cout << "Prime P = P+" << incr << endl;
}
cout << "Prime P = " << p << endl;
}
cout << "P mod 24 = " << p%24 << endl;
cout << "P is " << bits(p) << " bits long" << endl;
if (fout && !append) mueller << p << endl;
modulo(p); // Set prime modulus for ZZn type
for (j=0,i=1;;i++) // lets go
{
sp=primes[i];
if (sp==0) break;
if (sp<lo) continue;
if (sp>hi) break;
for (s=1;;s++)
if (s*(sp-1)%12==0) break;
if (s>=skip) continue;
j++;
cout << endl;
cout << "prime " << j << " = " << sp << " (s=" << s << ")" << endl;
mueller_pol(sp,s);
}
cout << endl;
if (j==0) cout << "No primes processed in the specified range" << endl;
if (j==1) cout << "One prime processed in the specified range" << endl;
if (j>1) cout << j << " primes processed in the specified range" << endl;
return 0;
}