KGC_TEST/KGCAPP/3rdparty/miracl/source/curve/pairing/ake12bnr.cpp

714 lines
12 KiB
C++

/*
Scott's AKE Client/Server testbed
See http://eprint.iacr.org/2002/164
Compile as
cl /O2 /GX /DZZNS=8 ake12bnr.cpp zzn12.cpp zzn6a.cpp ecn2.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
using COMBA build
Using g++, compile as
g++ -O2 -DZZNS=4 ake12bnr.cpp zzn12.cpp zzn6a.cpp ecn2.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.a -o ake12bnr
Barreto-Naehrig curve - R-ate pairing
The curve generated is generated from a 64-bit x parameter
See "Efficient and Generalized pairing Computation on Abelian Varieties", by E. Lee, H-S Lee and C-M Park
Cryptology ePrint Archive: Report 2008/040
NOTE: Irreducible polynomial is of the form x^6+(2+sqrt(-1))
See bn.cpp for a program to generate suitable BN curves
Modified to prevent sub-group confinement attack
This is implemented using a 2-3-2 tower
*/
#include <iostream>
#include <fstream>
#include <string.h>
#include "ecn.h"
#include <ctime>
#include "ecn2.h"
#include "zzn12.h"
// cofactor - number of points on curve=CF.q
using namespace std;
#ifdef MR_COUNT_OPS
extern "C"
{
int fpc=0;
int fpa=0;
int fpx=0;
int fpm2=0;
int fpi2=0;
}
#endif
Miracl precision(8,0);
#ifdef MR_AFFINE_ONLY
#define AFFINE
#else
#define PROJECTIVE
#endif
// Using SHA-256 as basic hash algorithm
#define HASH_LEN 32
//
// R-ate Pairing Code
//
void set_frobenius_constant(ZZn2 &X)
{
Big p=get_modulus();
switch (get_mip()->pmod8)
{
case 5:
X.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2
break;
case 3: // = (1+sqrt(-1))^(p-1)/2
X.set((Big)1,(Big)1);
break;
case 7:
X.set((Big)2,(Big)1); // = (2+sqrt(-1))^(p-1)/2
default: break;
}
X=pow(X,(p-1)/6);
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn12 line(ECn2& A,ECn2& C,ECn2&B,ZZn2& slope,ZZn2& extra,BOOL Doubling,ZZn& Qx,ZZn& Qy)
{
ZZn12 w;
ZZn6 nn,dd;
ZZn2 X,Y;
#ifdef AFFINE
A.get(X,Y);
dd.set(slope*Qx,Y-slope*X);
nn.set((ZZn2)-Qy);
w.set(nn,dd);
#endif
#ifdef PROJECTIVE
ZZn2 Z3;
C.getZ(Z3);
// Thanks to A. Menezes for pointing out this optimization...
if (Doubling)
{
ZZn2 Z,ZZ;
A.get(X,Y,Z);
ZZ=Z; ZZ*=ZZ;
dd.set(-(ZZ*slope)*Qx,slope*X-extra);
nn.set((Z3*ZZ)*Qy);
}
else
{
ZZn2 X2,Y2;
B.get(X2,Y2);
dd.set(-slope*Qx,slope*X2-Y2*Z3);
nn.set(Z3*Qy);
}
w.set(nn,dd);
#endif
//cout << "w= " << w << endl;
return w;
}
//
// fast multiplication by p-1+t
// We know F^2-tF+p = 0
// So p.S=t.F(S)-F^2(S), where F is Frobenius Endomorphism
// So (p-1+t).S = t(F(S)+S)-F^2(S)-S
// This is just multiplication by t, which is half size of (p-1+t)
//
void cofactor(ECn2& S,ZZn2 &F,Big& t)
{
ZZn2 x,y,w,z;
ZZn6 h,l,W;
ECn2 K,T;
K=S;
z=F;
w=F*F;
S.get(x,y);
x=w*conj(x);
y=z*w*conj(y);
S.set(x,y);
x=w*conj(x);
y=z*w*conj(y);
T.set(x,y);
S+=K;
S*=t;
S-=T;
S-=K;
S.norm();
// First "untwist" the point A to (X,Y) where X,Y in F_p^{12}
/*
K=S;
ZZn12 X,Y,X2,Y2;
S.get(x,y);
h.clear();
l.set1(x);
X.set(l,h);
l.clear();
h.set1(y);
Y.set(l,h);
// Apply the Frobenius..
X.powq(F);
Y.powq(F);
X2=X; X2.powq(F);
Y2=Y; Y2.powq(F);
// Now "twist" it back to S
X.get(l,h);
l.get1(x);
Y.get(l,h);
h.get1(y);
S.set(x,y);
// untwist unto T
X2.get(l,h);
l.get1(x);
Y2.get(l,h);
h.get1(y);
T.set(x,y);
S+=K;
S*=t;
S-=T;
S-=K;
*/
}
void q_power_frobenius(ECn2 &A,ZZn2 &F)
{
// Fast multiplication of A by q (for Trace-Zero group members only)
ZZn2 x,y,z,w,r;
// Faster method
#ifdef AFFINE
A.get(x,y);
#else
A.get(x,y,z);
#endif
w=F*F;
r=F;
x=w*conj(x);
y=r*w*conj(y);
#ifdef AFFINE
A.set(x,y);
#else
z=conj(z);
A.set(x,y,z);
#endif
/*
// First "untwist" the point A to (X,Y) where X,Y in F_p^{12}
A.get(x,y);
h.clear();
l.set1(x);
X.set(l,h);
l.clear();
h.set1(y);
Y.set(l,h);
// Apply the Frobenius..
X.powq(F);
Y.powq(F);
// Now "twist" it back to A
X.get(l,h);
l.get1(x);
Y.get(l,h);
h.get1(y);
A.set(x,y);
*/
}
//
// Add A=A+B (or A=A+A)
// Return line function value
//
ZZn12 g(ECn2& A,ECn2& B,ZZn& Qx,ZZn& Qy)
{
ZZn2 lam,extra;
ZZn12 r;
ECn2 P=A;
BOOL Doubling;
// Evaluate line from A
Doubling=A.add(B,lam,extra);
if (A.iszero()) return (ZZn12)1;
r=line(P,A,B,lam,extra,Doubling,Qx,Qy);
return r;
}
//
// R-ate Pairing - note denominator elimination has been applied
//
// P is a point of order q. Q(x,y) is a point of order q.
// Note that P is a point on the sextic twist of the curve over Fp^2, Q(x,y) is a point on the
// curve over the base field Fp
//
BOOL fast_pairing(ECn2& P,ZZn& Qx,ZZn& Qy,Big &x,ZZn2 &X,ZZn6& res)
{
ECn2 A,KA;
ZZn2 AX,AY;
int i,nb;
Big n;
ZZn12 r,w;
ZZn12 t0,t1;
ZZn12 x0,x1,x2,x3,x4,x5;
#ifdef MR_COUNT_OPS
fpc=fpa=fpx=0;
#endif
if (x>0) n=6*x+2;
else n=-3-6*x;
A=P;
nb=bits(n);
r=1;
// Short Miller loop
for (i=nb-2;i>=0;i--)
{
r*=r;
r*=g(A,A,Qx,Qy);
if (bit(n,i))
r*=g(A,P,Qx,Qy);
}
// a small amount of extra work..
t0=r;
KA=A;
if (x>0)
{
r*=g(A,P,Qx,Qy);
r.powq(X);
r*=t0;
}
else
{
r.powq(X);
r*=t0;
r*=g(KA,P,Qx,Qy);
}
q_power_frobenius(A,X); // A*=(t-1)
KA.norm();
r*=g(A,KA,Qx,Qy);
#ifdef MR_COUNT_OPS
cout << "Miller fpc= " << fpc << endl;
cout << "Miller fpa= " << fpa << endl;
fpa=fpc=fpx=0;
#endif
if (r.iszero()) return FALSE;
// The final exponentiation
t0=r;
r.conj();
r/=t0; // r^(p^6-1)
r.mark_as_unitary(); // from now on all inverses are just conjugates !!
t0=r;
r.powq(X);
r.powq(X);
r*=t0; // r^[(p^6-1)*(p^2+1)]
// Newer new idea...
// See "On the final exponentiation for calculating pairings on ordinary elliptic curves"
// Michael Scott and Naomi Benger and Manuel Charlemagne and Luis J. Dominguez Perez and Ezekiel J. Kachisa
t1=pow(r,-x); // x is sparse..
t0=r; t0.powq(X);
x0=t0; x0.powq(X);
x0*=(r*t0);
x0.powq(X);
x1=inverse(r); // just a conjugation!
x3=t1; x3.powq(X);
x4=t1;
t1=pow(t1,-x);
x2=t1; x2.powq(X);
x4/=x2;
x2.powq(X);
x5=inverse(t1);
t0=pow(t1,-x);
t1=t0; t1.powq(X); t0*=t1;
t0*=t0;
t0*=x4;
t0*=x5;
t1=x3*x5;
t1*=t0;
t0*=x2;
t1*=t1;
t1*=t0;
t1*=t1;
t0=t1*x1;
t1*=x0;
t0*=t0;
t0*=t1;
#ifdef MR_COUNT_OPS
cout << "FE fpc= " << fpc << endl;
cout << "FE fpa= " << fpa << endl;
cout << "FE fpx= " << fpx << endl;
fpa=fpc=fpx=0;
#endif
res= real(t0); // compress to half size...
return TRUE;
/*
// New idea..
//1. Calculate a=1/r^(6x+5)
//2. Calculate b=a^p using Frobenius
//3. Calculate c=ab
//4. Calculate r^p, r^{p^2} and r^{p^3} using Frobenius
//5. Calculate final exponentiation as
// r^{p^3}.[c.(r^p)^2.r^{p^2}]^{6x^2+1).c.(r^p.r)^9.a.r^4
//
// Does not require multi-exponentiation, but total exponent length is the same.
// Also does not need precomputation (x is sparse).
//
if (x<0)
a=pow(r,-5-6*x);
else
a=inverse(pow(r,5+6*x)); // inverses are "free" for unitary values
b=a; b.powq(X);
b*=a;
rp=r; rp.powq(X);
a*=b;
w=r; w*=w; w*=w;
a*=w;
c=rp*r; w=c; w*=w; w*=w; w*=w; w*=c;
a*=w; w=(rp*rp);
rp.powq(X);
w*=(b*rp);
c=pow(w,x);
r=w*pow(c,6*x); // r=pow(w,6*x*x+1); // time consuming bit...
rp.powq(X); a*=rp;
r*=a;
#ifdef MR_COUNT_OPS
cout << "FE fpc= " << fpc << endl;
cout << "FE fpa= " << fpa << endl;
cout << "FE fpx= " << fpx << endl;
fpa=fpc=fpx=0;
#endif
res= real(r); // compress to half size...
return TRUE;
*/
}
//
// ecap(.) function
//
BOOL ecap(ECn2& P,ECn& Q,Big& x,ZZn2 &X,ZZn6& r)
{
BOOL Ok;
Big xx,yy;
ZZn Qx,Qy;
P.norm();
Q.get(xx,yy); Qx=xx; Qy=yy;
Ok=fast_pairing(P,Qx,Qy,x,X,r);
if (Ok) return TRUE;
return FALSE;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha256 sh;
shs256_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs256_process(&sh,string[i]);
}
shs256_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H2(ZZn6 x)
{ // Hash an Fp6 to a big number
sha256 sh;
ZZn2 u,v,w;
ZZn h,l;
Big a,hash,p,xx[6];
char s[HASH_LEN];
int i,j,m;
shs256_init(&sh);
x.get(u,v,w);
u.get(l,h);
xx[0]=l; xx[1]=h;
v.get(l,h);
xx[2]=l; xx[3]=h;
w.get(l,h);
xx[4]=l; xx[5]=h;
for (i=0;i<6;i++)
{
a=xx[i];
while (a>0)
{
m=a%256;
shs256_process(&sh,m);
a/=256;
}
}
shs256_hash(&sh,s);
hash=from_binary(HASH_LEN,s);
return hash;
}
// Hash and map a Server Identity to a curve point E_(Fp2)
ECn2 hash_and_map2(char *ID)
{
int i;
ECn2 S;
ZZn2 X;
Big x0=H1(ID);
forever
{
x0+=1;
X.set((ZZn)0,(ZZn)x0);
//cout << "X= " << X << endl;
if (!S.set(X)) continue;
break;
}
// cout << "S= " << S << endl;
return S;
}
// Hash and map a Client Identity to a curve point E_(Fp) of order q
ECn hash_and_map(char *ID)
{
ECn Q;
Big x0=H1(ID);
while (!Q.set(x0,x0)) x0+=1;
return Q;
}
int main()
{
miracl* mip=&precision;
ECn Alice,Bob,sA,sB;
ECn2 Server,sS;
ZZn6 sp,ap,bp,res;
ZZn2 X;
// ZZn12 Y;
Big a,b,s,ss,p,q,x,y,cf,t;
int i,bits,A,B;
time_t seed;
mip->IOBASE=16;
// x= (char *)"-600000000000219B"; // found by BN.CPP B=3
// B=3;
x=(char *)"-4080000000000001"; // Nogami et al.'s curve B=22
B=22;
p=36*pow(x,4)+36*pow(x,3)+24*x*x+6*x+1;
t=6*x*x+1;
q=p+1-t;
cf=p-1+t;
modulo(p);
set_frobenius_constant(X);
cout << "Initialised... " << endl;
// cout << "sqrt(-3)= " << sqrt((ZZn)-3,p) << endl;
cout << "p= " << p << endl;
time(&seed);
irand((long)seed);
#ifdef AFFINE
ecurve((Big)0,(Big)B,p,MR_AFFINE);
#endif
#ifdef PROJECTIVE
ecurve((Big)0,(Big)B,p,MR_PROJECTIVE);
#endif
mip->IOBASE=16;
mip->TWIST=MR_SEXTIC_D; // map Server to point on twisted curve E(Fp2)
ss=rand(q); // TA's super-secret
Server=hash_and_map2((char *)"Server");
cofactor(Server,X,t); // fast multiplication by cf
cout << "Mapping Alice & Bob ID's to points" << endl;
Alice=hash_and_map((char *)"Alice");
Bob= hash_and_map((char *)"Robert");
sS=ss*Server;
//for (i=0;i<10000;i++)
sA=ss*Alice;
sB=ss*Bob;
cout << "Alice and Server Key Exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
//for (i=0;i<10000;i++)
if (!ecap(Server,sA,x,X,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn6)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
ap=powl(res,a);
if (!ecap(sS,Alice,x,X,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn6)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=powl(res,s);
cout << "Alice Key= " << H2(powl(sp,a)) << endl;
cout << "Server Key= " << H2(powl(ap,s)) << endl;
cout << "Bob and Server Key Exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
if (!ecap(Server,sB,x,X,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn6)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
bp=powl(res,b);
if (!ecap(sS,Bob,x,X,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn6)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=powl(res,s);
cout << "Bob's Key= " << H2(powl(sp,b)) << endl;
cout << "Server Key= " << H2(powl(bp,s)) << endl;
return 0;
}