KGC_TEST/KGCAPP/3rdparty/miracl/source/curve/pairing/ake12bnx.cpp

777 lines
15 KiB
C++

/*
Scott's AKE Client/Server testbed
See http://eprint.iacr.org/2002/164
On 64-bit processors compile as
cl /O2 /GX /DZZNS=4 ake12bnx.cpp zzn12a.cpp zzn4.cpp ecn2.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
using COMBA build
Using g++, compile as
g++ -O2 -DZZNS=4 ake12bnx.cpp zzn12a.cpp zzn4.cpp ecn2.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.a -o ake12bnx
Barreto-Naehrig curve - R-ate pairing, and 1-2-4-12 Towering plus most known optimizations.
The curve generated is generated from a 64-bit x parameter
See "Efficient and Generalized pairing Computation on Abelian Varieties", by E. Lee, H-S Lee and C-M Park
Cryptology ePrint Archive: Report 2008/040
Irreducible poly is X^3+n, where n=sqrt(w+sqrt(m)), m= {-1,-2} and w= {0,1,2}
if p=5 mod 8, n=sqrt(-2)
if p=3 mod 8, n=1+sqrt(-1)
if p=7 mod 8, p=2,3 mod 5, n=2+sqrt(-1)
See bn.cpp for a program to generate suitable BN curves
Modified to prevent sub-group confinement attack.
Modified 9/11/2011 to support M-type twists
This is implemented using a 1-2-4-12 tower
*/
#include <iostream>
#include <fstream>
#include <string.h>
#include "ecn.h"
#include <ctime>
#include "ecn2.h"
#include "zzn12a.h"
using namespace std;
#ifdef MR_COUNT_OPS
extern "C"
{
int fpc=0;
int fpa=0;
int fpx=0;
int fpm2=0;
int fpi2=0;
int fpmq=0;
int fpsq=0;
int fpaq=0;
}
#endif
#if MIRACL==64
Miracl precision(4,0);
#else
Miracl precision(8,0);
#endif
#ifdef MR_AFFINE_ONLY
#define AFFINE
#else
#define PROJECTIVE
#endif
// Using SHA-256 as basic hash algorithm
#define HASH_LEN 32
//
// R-ate Pairing Code
//
void set_frobenius_constant(ZZn2 &X)
{
Big p=get_modulus();
switch (get_mip()->pmod8)
{
case 5:
X.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2
break;
case 3: // = (1+sqrt(-1))^(p-1)/2
X.set((Big)1,(Big)1);
break;
case 7:
X.set((Big)2,(Big)1); // = (2+sqrt(-1))^(p-1)/2
default: break;
}
X=pow(X,(p-1)/6);
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn12 line(ECn2& A,ECn2& C,ECn2& B,ZZn2& slope,ZZn2& extra,BOOL Doubling,ZZn& Qx,ZZn& Qy)
{
ZZn12 w;
ZZn4 nn,dd,cc;
ZZn2 X,Y;
#ifdef AFFINE
A.get(X,Y);
if (get_mip()->TWIST==MR_SEXTIC_M)
{
nn.set(txx((ZZn2)-Qy),Y-slope*X);
cc.seth(slope*Qx);
}
if (get_mip()->TWIST==MR_SEXTIC_D)
{
nn.set((ZZn2)-Qy,Y-slope*X);
dd.set(slope*Qx);
}
w.set(nn,dd,cc);
#endif
#ifdef PROJECTIVE
ZZn2 Z3;
C.getZ(Z3);
// Thanks to A. Menezes for pointing out this optimization...
if (Doubling)
{
ZZn2 Z,ZZ;
A.get(X,Y,Z);
ZZ=Z; ZZ*=ZZ;
if (get_mip()->TWIST==MR_SEXTIC_M)
{ // "multiplied across" by i to simplify
nn.set((Z3*ZZ)*txx((ZZn2)Qy),slope*X-extra);
cc.seth(-(ZZ*slope)*Qx);
}
if (get_mip()->TWIST==MR_SEXTIC_D)
{
nn.set((Z3*ZZ)*Qy,slope*X-extra);
dd.set(-(ZZ*slope)*Qx);
}
}
else
{
ZZn2 X2,Y2;
B.get(X2,Y2);
if (get_mip()->TWIST==MR_SEXTIC_M)
{
nn.set(Z3*txx((ZZn2)Qy),slope*X2-Y2*Z3);
cc.seth(-slope*Qx);
}
if (get_mip()->TWIST==MR_SEXTIC_D)
{
nn.set(Z3*Qy,slope*X2-Y2*Z3);
dd.set(-slope*Qx);
}
}
w.set(nn,dd,cc);
#endif
return w;
}
void endomorph(ECn &A,ZZn &Beta)
{ // apply endomorphism (x,y) = (Beta*x,y) where Beta is cube root of unity
ZZn x;
x=(A.get_point())->X;
x*=Beta;
copy(getbig(x),(A.get_point())->X);
}
void q_power_frobenius(ECn2 &A,ZZn2 &F)
{
// Fast multiplication of A by q (for Trace-Zero group members only)
ZZn2 x,y,z,w,r;
#ifdef AFFINE
A.get(x,y);
#else
A.get(x,y,z);
#endif
w=F*F;
r=F;
if (get_mip()->TWIST==MR_SEXTIC_M) r=inverse(F); // could be precalculated
if (get_mip()->TWIST==MR_SEXTIC_D) r=F;
w=r*r;
x=w*conj(x);
y=r*w*conj(y);
#ifdef AFFINE
A.set(x,y);
#else
z.conj();
A.set(x,y,z);
#endif
}
//
// Faster Hashing to G2 - Fuentes-Castaneda, Knapp and Rodriguez-Henriquez
//
void cofactor(ECn2& S,ZZn2 &F,Big& x)
{
ECn2 T,K;
T=S;
T*=x;
T.norm();
K=(T+T)+T;
K.norm();
q_power_frobenius(K,F);
q_power_frobenius(S,F); q_power_frobenius(S,F); q_power_frobenius(S,F);
S+=T; S+=K;
q_power_frobenius(T,F); q_power_frobenius(T,F);
S+=T;
S.norm();
}
//
// Add A=A+B (or A=A+A)
// Return line function value
//
ZZn12 g(ECn2& A,ECn2& B,ZZn& Qx,ZZn& Qy)
{
ZZn2 lam,extra;
ZZn12 r;
ECn2 P=A;
BOOL Doubling;
// Evaluate line from A
Doubling=A.add(B,lam,extra);
if (A.iszero()) return (ZZn12)1;
r=line(P,A,B,lam,extra,Doubling,Qx,Qy);
return r;
}
//
// R-ate Pairing G2 x G1 -> GT
//
// P is a point of order q in G1. Q(x,y) is a point of order q in G2.
// Note that P is a point on the sextic twist of the curve over Fp^2, Q(x,y) is a point on the
// curve over the base field Fp
//
BOOL fast_pairing(ECn2& P,ZZn& Qx,ZZn& Qy,Big &x,ZZn2 &X,ZZn12& res)
{
ECn2 A,KA;
ZZn2 AX,AY;
int i,nb;
Big n;
ZZn12 r;
ZZn12 t0,t1;
ZZn12 x0,x1,x2,x3,x4,x5;
#ifdef MR_COUNT_OPS
fpc=fpa=fpx=fpmq=fpsq=fpaq=0;
#endif
if (x<0) n=-(6*x+2);
else n=6*x+2;
A=P;
nb=bits(n);
r=1;
// Short Miller loop
r.mark_as_miller();
for (i=nb-2;i>=0;i--)
{
r*=r;
r*=g(A,A,Qx,Qy);
if (bit(n,i))
r*=g(A,P,Qx,Qy);
}
// Combining ideas due to Longa, Aranha et al. and Naehrig
KA=P;
q_power_frobenius(KA,X);
if (x<0) {A=-A; r.conj();}
r*=g(A,KA,Qx,Qy);
q_power_frobenius(KA,X); KA=-KA;
r*=g(A,KA,Qx,Qy);
#ifdef MR_COUNT_OPS
cout << "Miller fpc= " << fpc << endl;
cout << "Miller fpa= " << fpa << endl;
cout << "Miller fpx= " << fpx << endl;
cout << "Miller fpmq= " << fpmq << endl;
cout << "Miller fpsq= " << fpsq << endl;
cout << "Miller fpaq= " << fpaq << endl;
fpa=fpc=fpx=fpmq=fpsq=fpaq=0;
#endif
if (r.iszero()) return FALSE;
// The final exponentiation
t0=r;
r.conj();
r/=t0; // r^(p^6-1)
r.mark_as_regular(); // no longer "miller"
t0=r;
r.powq(X); r.powq(X);
r*=t0; // r^[(p^6-1)*(p^2+1)]
r.mark_as_unitary(); // from now on all inverses are just conjugates !! (and squarings are faster)
res=r;
// Newer new idea...
// See "On the final exponentiation for calculating pairings on ordinary elliptic curves"
// Michael Scott and Naomi Benger and Manuel Charlemagne and Luis J. Dominguez Perez and Ezekiel J. Kachisa
t0=res; t0.powq(X);
x0=t0; x0.powq(X);
x0*=(res*t0);
x0.powq(X);
x1=inverse(res); // just a conjugation!
x4=pow(res,-x); // x is sparse..
x3=x4; x3.powq(X);
x2=pow(x4,-x);
x5=inverse(x2);
t0=pow(x2,-x);
x2.powq(X);
x4/=x2;
x2.powq(X);
res=t0; res.powq(X); t0*=res;
t0*=t0;
t0*=x4;
t0*=x5;
res=x3*x5;
res*=t0;
t0*=x2;
res*=res;
res*=t0;
res*=res;
t0=res*x1;
res*=x0;
t0*=t0;
t0*=res;
#ifdef MR_COUNT_OPS
cout << "FE fpc= " << fpc << endl;
cout << "FE fpa= " << fpa << endl;
cout << "FE fpx= " << fpx << endl;
cout << "FE fpmq= " << fpmq << endl;
cout << "FE fpsq= " << fpsq << endl;
cout << "FE fpaq= " << fpaq << endl;
fpa=fpc=fpx=fpmq=fpsq=fpaq=0;
#endif
res= t0;
return TRUE;
}
//
// ecap(.) function
//
BOOL ecap(ECn2& P,ECn& Q,Big& x,ZZn2 &X,ZZn12& r)
{
BOOL Ok;
Big xx,yy;
ZZn Qx,Qy;
P.norm();
Q.get(xx,yy); Qx=xx; Qy=yy;
Ok=fast_pairing(P,Qx,Qy,x,X,r);
if (Ok) return TRUE;
return FALSE;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha256 sh;
shs256_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs256_process(&sh,string[i]);
}
shs256_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H2(ZZn12 x)
{ // Compress and hash an Fp12 to a big number
sha256 sh;
ZZn4 u;
ZZn2 h,l;
Big a,hash,p,xx[4];
char s[HASH_LEN];
int i,j,m;
shs256_init(&sh);
x.get(u); // compress to single ZZn4
u.get(l,h);
xx[0]=real(l); xx[1]=imaginary(l); xx[2]=real(h); xx[3]=imaginary(h);
for (i=0;i<4;i++)
{
a=xx[i];
while (a>0)
{
m=a%256;
shs256_process(&sh,m);
a/=256;
}
}
shs256_hash(&sh,s);
hash=from_binary(HASH_LEN,s);
return hash;
}
// Hash and map a Server Identity to a curve point E_(Fp2)
ECn2 hash_and_map2(char *ID)
{
int i;
ECn2 S;
ZZn2 X;
Big x0=H1(ID);
forever
{
x0+=1;
X.set((ZZn)1,(ZZn)x0);
if (!S.set(X)) continue;
break;
}
return S;
}
// Hash and map a Client Identity to a curve point E_(Fp) of order q
ECn hash_and_map(char *ID)
{
ECn Q;
Big x0=H1(ID);
while (!Q.set(x0,x0)) x0+=1;
return Q;
}
// test if a ZZn12 element is of order q
// test r^q = r^p+1-t =1, so test r^p=r^(t-1)
BOOL member(ZZn12 r,Big &x,ZZn2 &X)
{
ZZn12 w=r;
w.powq(X);
r=pow(r,x); r=pow(r,x); r=pow(r,(Big)6); // t-1=6x^2
if (w==r) return TRUE;
return FALSE;
}
// Use Galbraith & Scott Homomorphism idea ...
void galscott(Big &e,Big &r,Big WB[4],Big B[4][4],Big u[4])
{
int i,j;
Big v[4],w;
for (i=0;i<4;i++)
{
v[i]=mad(WB[i],e,(Big)0,r,w);
u[i]=0;
}
u[0]=e;
for (i=0;i<4;i++)
for (j=0;j<4;j++)
u[i]-=v[j]*B[j][i];
return;
}
// GLV method
void glv(Big &e,Big &r,Big W[2],Big B[2][2],Big u[2])
{
int i,j;
Big v[2],w;
for (i=0;i<2;i++)
{
v[i]=mad(W[i],e,(Big)0,r,w);
u[i]=0;
}
u[0]=e;
for (i=0;i<2;i++)
for (j=0;j<2;j++)
u[i]-=v[j]*B[j][i];
return;
}
// Use GLV endomorphism idea for multiplication in G1
ECn G1_mult(ECn &P,Big &e,ZZn &Beta,Big &r,Big W[2],Big B[2][2])
{
// return e*P;
int i;
ECn Q;
Big u[2];
glv(e,r,W,B,u);
Q=P;
endomorph(Q,Beta);
Q=mul(u[0],P,u[1],Q);
return Q;
}
//.. for multiplication in G2
ECn2 G2_mult(ECn2 &P,Big &e,ZZn2 &X,Big &r,Big WB[4],Big B[4][4])
{
// return e*P;
int i;
ECn2 Q[4];
Big u[4];
galscott(e,r,WB,B,u);
Q[0]=P;
for (i=1;i<4;i++)
{
Q[i]=Q[i-1];
q_power_frobenius(Q[i],X);
}
// deal with -ve multipliers
for (i=0;i<4;i++)
{
if (u[i]<0)
{u[i]=-u[i];Q[i]=-Q[i];}
}
// simple multi-addition
return mul4(Q,u);
}
//.. and for exponentiation in GT
ZZn12 GT_pow(ZZn12 &res,Big &e,ZZn2 &X,Big &r,Big WB[4],Big B[4][4])
{
// return pow(res,e);
int i,j;
ZZn12 Y[4];
Big u[4];
galscott(e,r,WB,B,u);
Y[0]=res;
for (i=1;i<4;i++)
{Y[i]=Y[i-1]; Y[i].powq(X);}
// deal with -ve exponents
for (i=0;i<4;i++)
{
if (u[i]<0)
{u[i]=-u[i];Y[i].conj();}
}
// simple multi-exponentiation
return pow(4,Y,u);
}
int main()
{
miracl* mip=&precision;
ECn Alice,Bob,sA,sB;
ECn2 Server,sS;
ZZn12 sp,ap,bp,res;
ZZn2 X;
Big a,b,s,ss,p,q,x,y,cf,t,BB[4][4],WB[4],SB[2][2],W[2];
int i,A,B;
time_t seed;
mip->IOBASE=16;
// Set Curve. Note D-Type Curves are recommended. Use BN.CPP program to generate curves.
// Curve 1.
// x= (char *)"6000000000160007"; // found by BN.CPP
// B=23;
// mip->TWIST=MR_SEXTIC_D;
// Curve 2.
x= (char *)"-4080000000000001";
B=2;
mip->TWIST=MR_SEXTIC_D;
// Curve 3.
// x= (char *)"408000000000967A";
// B=2;
// mip->TWIST=MR_SEXTIC_D;
// Curve 4.
// x= (char *)"4080000000002C77";
// B=3;
// mip->TWIST=MR_SEXTIC_M; // map Server to point on twisted curve E(Fp2)
// See ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf
// D and M-type twists require a different "untwisting" operation - see paper above
p=36*pow(x,4)+36*pow(x,3)+24*x*x+6*x+1;
t=6*x*x+1;
q=p+1-t;
cf=p-1+t;
modulo(p);
// Big Lambda=-(36*pow(x,3)+18*x*x+6*x+2); // cube root of unity mod q
ZZn Beta=-(18*pow(x,3)+18*x*x+9*x+2); // cube root of unity mod p
set_frobenius_constant(X);
// Use standard Gallant-Lambert-Vanstone endomorphism method for G1
W[0]=6*x*x+4*x+1; // This is first column of inverse of SB (without division by determinant)
W[1]=-(2*x+1);
SB[0][0]=6*x*x+2*x;
SB[0][1]=-(2*x+1);
SB[1][0]=-(2*x+1);
SB[1][1]=-(6*x*x+4*x+1);
// Use Galbraith & Scott Homomorphism idea for G2 & GT ... (http://eprint.iacr.org/2008/117.pdf Example 5)
WB[0]=2*x*x+3*x+1; // This is first column of inverse of BB (without division by determinant)
WB[1]=12*x*x*x+8*x*x+x;
WB[2]=6*x*x*x+4*x*x+x;
WB[3]=-2*x*x-x;
BB[0][0]=x+1; BB[0][1]=x; BB[0][2]=x; BB[0][3]=-2*x;
BB[1][0]=2*x+1; BB[1][1]=-x; BB[1][2]=-(x+1); BB[1][3]=-x;
BB[2][0]=2*x; BB[2][1]=2*x+1; BB[2][2]=2*x+1; BB[2][3]=2*x+1;
BB[3][0]=x-1; BB[3][1]=4*x+2; BB[3][2]=-(2*x-1); BB[3][3]=x-1;
cout << "Initialised... " << endl;
time(&seed);
irand((long)seed);
#ifdef AFFINE
ecurve((Big)0,(Big)B,p,MR_AFFINE);
#endif
#ifdef PROJECTIVE
ecurve((Big)0,(Big)B,p,MR_PROJECTIVE);
#endif
mip->IOBASE=16;
ss=rand(q); // TA's super-secret
Server=hash_and_map2((char *)"Server");
cofactor(Server,X,x); // fast multiplication by cf
cout << "Mapping Alice & Bob ID's to points" << endl;
Alice=hash_and_map((char *)"Alice");
Bob= hash_and_map((char *)"Robert");
sS=G2_mult(Server,ss,X,q,WB,BB); // Use Galbraith-Scott Homomorphism to multiply in G2
sA=G1_mult(Alice,ss,Beta,q,W,SB); // Use GLV method to multiply in G1
sB=G1_mult(Bob,ss,Beta,q,W,SB);
cout << "Alice and Server Key Exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
//for (i=0;i<10000;i++) // for timing
if (!ecap(Server,sA,x,X,res)) cout << "Trouble" << endl;
if (!member(res,x,X))
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
#ifdef MR_COUNT_OPS
fpc=fpa=fpx=fpmq=fpsq=fpaq=0;
#endif
ap=GT_pow(res,a,X,q,WB,BB); // Use Galbraith-Scott Homomorphism > 2 times faster!
#ifdef MR_COUNT_OPS
cout << "EXP fpc= " << fpc << endl;
cout << "EXP fpa= " << fpa << endl;
cout << "EXP fpx= " << fpx << endl;
cout << "EXP fpmq= " << fpmq << endl;
cout << "EXP fpsq= " << fpsq << endl;
cout << "EXP fpaq= " << fpaq << endl;
fpa=fpc=fpx=fpmq=fpsq=fpaq=0;
#endif
if (!ecap(sS,Alice,x,X,res)) cout << "Trouble" << endl;
if (!member(res,x,X))
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=GT_pow(res,s,X,q,WB,BB);
cout << "Alice Key= " << H2(GT_pow(sp,a,X,q,WB,BB)) << endl;
cout << "Server Key= " << H2(GT_pow(ap,s,X,q,WB,BB)) << endl;
cout << "Bob and Server Key Exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
if (!ecap(Server,sB,x,X,res)) cout << "Trouble" << endl;
if (!member(res,x,X))
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
bp=GT_pow(res,b,X,q,WB,BB);
if (!ecap(sS,Bob,x,X,res)) cout << "Trouble" << endl;
if (!member(res,x,X))
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=GT_pow(res,s,X,q,WB,BB);
cout << "Bob's Key= " << H2(GT_pow(sp,b,X,q,WB,BB)) << endl;
cout << "Server Key= " << H2(GT_pow(bp,s,X,q,WB,BB)) << endl;
return 0;
}