712 lines
13 KiB
C++
712 lines
13 KiB
C++
/*
|
|
|
|
Scott's AKE Client/Server testbed
|
|
|
|
See http://eprint.iacr.org/2002/164
|
|
|
|
On Windows compile as
|
|
cl /O2 /GX /DZZNS=10 ake24blsa.cpp zzn24.cpp zzn8.cpp zzn4.cpp zzn2.cpp zzn.cpp ecn.cpp ecn4.cpp big.cpp miracl.lib
|
|
|
|
for 64-bit computer. Change to /DZZNS=20 for 32-bit computer
|
|
|
|
On Linux compile as
|
|
g++ -O2 -DZZNS=10 ake24blsa.cpp zzn24.cpp zzn8.cpp zzn4.cpp zzn2.cpp zzn.cpp ecn.cpp ecn4.cpp big.cpp miracl.a -o ake24blsa
|
|
|
|
Barreto-Lynn-Scott k=24 Curve - ate pairing
|
|
|
|
The BLS curve generated is generated from an x parameter
|
|
This version implements the ate pairing (which is optimal in this case)
|
|
|
|
See bls24.cpp for a program to generate suitable bls24 curves
|
|
|
|
Modified to prevent sub-group confinement attack
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <string.h>
|
|
#include "ecn.h"
|
|
#include <ctime>
|
|
#include "ecn4.h"
|
|
#include "zzn24.h"
|
|
|
|
using namespace std;
|
|
|
|
#ifdef MR_COUNT_OPS
|
|
extern "C"
|
|
{
|
|
int fpc=0;
|
|
int fpa=0;
|
|
int fpx=0;
|
|
int fpm2=0;
|
|
int fpi2=0;
|
|
int fpaq=0;
|
|
int fpsq=0;
|
|
int fpmq=0;
|
|
}
|
|
#endif
|
|
|
|
#if MIRACL==64
|
|
Miracl precision(10,0);
|
|
#else
|
|
Miracl precision(20,0);
|
|
#endif
|
|
|
|
// Using SHA-256 as basic hash algorithm
|
|
|
|
#define HASH_LEN 32
|
|
|
|
ZZn24 Frobenius(ZZn24 P, ZZn2 &X, int k)
|
|
{
|
|
ZZn24 Q=P;
|
|
for (int i=0; i<k; i++)
|
|
Q.powq(X);
|
|
return Q;
|
|
}
|
|
|
|
// Suitable for p=7 mod 12
|
|
|
|
void set_frobenius_constant(ZZn2 &X)
|
|
{
|
|
Big p=get_modulus();
|
|
X.set((Big)1,(Big)1); // p=3 mod 8
|
|
X=pow(X,(p-7)/12);
|
|
}
|
|
|
|
//
|
|
// Line from A to destination C. Let A=(x,y)
|
|
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
|
|
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
|
|
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
|
|
//
|
|
|
|
ZZn24 line(ECn4& A,ECn4& C,ZZn4& slope,ZZn& Qx,ZZn& Qy)
|
|
{
|
|
ZZn24 w;
|
|
ZZn8 nn,dd;
|
|
ZZn4 X,Y;
|
|
|
|
A.get(X,Y);
|
|
|
|
nn.set((ZZn4)-Qy,Y-slope*X);
|
|
dd.set(slope*Qx);
|
|
w.set(nn,dd);
|
|
|
|
return w;
|
|
}
|
|
|
|
//
|
|
// Add A=A+B (or A=A+A)
|
|
// Return line function value
|
|
//
|
|
|
|
ZZn24 g(ECn4& A,ECn4& B,ZZn& Qx,ZZn& Qy)
|
|
{
|
|
ZZn4 lam;
|
|
ZZn24 r;
|
|
ECn4 P=A;
|
|
|
|
// Evaluate line from A
|
|
A.add(B,lam);
|
|
if (A.iszero()) return (ZZn24)1;
|
|
r=line(P,A,lam,Qx,Qy);
|
|
|
|
return r;
|
|
}
|
|
|
|
//
|
|
// This calculates p.A = (X^p,Y^p) quickly using Frobenius
|
|
// 1. Extract A(x,y) from twisted curve to point on curve over full extension, as X=i^2.x and Y=i^3.y
|
|
// where i=NR^(1/k)
|
|
// 2. Using Frobenius calculate (X^p,Y^p)
|
|
// 3. map back to twisted curve
|
|
// Here we simplify things by doing whole calculation on the twisted curve
|
|
//
|
|
// Note we have to be careful as in detail it depends on w where p=w mod k
|
|
// Its simplest if w=1.
|
|
//
|
|
|
|
ECn4 psi(ECn4 &A,ZZn2 &F,int n)
|
|
{
|
|
int i;
|
|
ECn4 R;
|
|
ZZn4 X,Y;
|
|
ZZn2 FF,W;
|
|
// Fast multiplication of A by q^n
|
|
A.get(X,Y);
|
|
FF=F*F;
|
|
W=txx(txx(txx(FF*FF*FF)));
|
|
|
|
for (i=0;i<n;i++)
|
|
{ // assumes p=7 mod 12
|
|
X.powq(W); X=tx(tx(FF*X));
|
|
Y.powq(W); Y=tx(tx(tx(FF*F*Y)));
|
|
}
|
|
|
|
R.set(X,Y);
|
|
return R;
|
|
}
|
|
|
|
// Automatically generated by Luis Dominguez
|
|
|
|
ZZn24 HardExpo(ZZn24 &f3x0, ZZn2 &X, Big &x){
|
|
//vector=[ 1, 2, 3 ]
|
|
ZZn24 r;
|
|
ZZn24 xA;
|
|
ZZn24 xB;
|
|
ZZn24 t0;
|
|
ZZn24 t1;
|
|
ZZn24 f3x1;
|
|
ZZn24 f3x2;
|
|
ZZn24 f3x3;
|
|
ZZn24 f3x4;
|
|
ZZn24 f3x5;
|
|
ZZn24 f3x6;
|
|
ZZn24 f3x7;
|
|
ZZn24 f3x8;
|
|
ZZn24 f3x9;
|
|
|
|
f3x1=pow(f3x0,x);
|
|
f3x2=pow(f3x1,x);
|
|
f3x3=pow(f3x2,x);
|
|
f3x4=pow(f3x3,x);
|
|
f3x5=pow(f3x4,x);
|
|
f3x6=pow(f3x5,x);
|
|
f3x7=pow(f3x6,x);
|
|
f3x8=pow(f3x7,x);
|
|
f3x9=pow(f3x8,x);
|
|
|
|
xA=f3x4*inverse(f3x8)*Frobenius(f3x3,X,1)*Frobenius(inverse(f3x7),X,1)*Frobenius(f3x2,X,2)*Frobenius(inverse(f3x6),X,2)*Frobenius(f3x1,X,3)*Frobenius(inverse(f3x5),X,3)*Frobenius(inverse(f3x4),X,4)*Frobenius(inverse(f3x3),X,5)*Frobenius(inverse(f3x2),X,6)*Frobenius(inverse(f3x1),X,7);
|
|
xB=f3x0;
|
|
t0=xA*xB;
|
|
xA=inverse(f3x3)*inverse(f3x5)*f3x7*f3x9*Frobenius(inverse(f3x2),X,1)*Frobenius(inverse(f3x4),X,1)*Frobenius(f3x6,X,1)*Frobenius(f3x8,X,1)*Frobenius(inverse(f3x1),X,2)*Frobenius(inverse(f3x3),X,2)*Frobenius(f3x5,X,2)*Frobenius(f3x7,X,2)*Frobenius(inverse(f3x0),X,3)*Frobenius(inverse(f3x2),X,3)*Frobenius(f3x4,X,3)*Frobenius(f3x6,X,3)*Frobenius(f3x3,X,4)*Frobenius(f3x5,X,4)*Frobenius(f3x2,X,5)*Frobenius(f3x4,X,5)*Frobenius(f3x1,X,6)*Frobenius(f3x3,X,6)*Frobenius(f3x0,X,7)*Frobenius(f3x2,X,7);
|
|
xB=f3x0;
|
|
t1=xA*xB;
|
|
t0=t0*t0;
|
|
t0=t0*t1;
|
|
|
|
r=t0;
|
|
return r;
|
|
|
|
}
|
|
|
|
void SoftExpo(ZZn24 &f3, ZZn2 &X){
|
|
ZZn24 t0;
|
|
int i;
|
|
|
|
t0=f3; f3.conj(); f3/=t0;
|
|
f3.mark_as_regular();
|
|
t0=f3; for (i=1;i<=4;i++) f3.powq(X); f3*=t0;
|
|
f3.mark_as_unitary();
|
|
}
|
|
|
|
//
|
|
// R-ate Pairing - note denominator elimination has been applied
|
|
//
|
|
// P is a point of order q. Q(x,y) is a point of order q.
|
|
// Note that P is a point on the sextic twist of the curve over Fp^2, Q(x,y) is a point on the
|
|
// curve over the base field Fp
|
|
//
|
|
|
|
BOOL fast_pairing(ECn4& P,ZZn& Qx,ZZn& Qy,Big &x,ZZn2 &X,ZZn24& r)
|
|
{
|
|
ECn4 A;
|
|
Big n;
|
|
int i,nb;
|
|
|
|
#ifdef MR_COUNT_OPS
|
|
fpc=fpa=fpx=0;
|
|
#endif
|
|
|
|
n=x; // t-1
|
|
A=P; // remember A
|
|
|
|
nb=bits(n);
|
|
r=1;
|
|
r.mark_as_miller();
|
|
//fpc=fpa=fpx=0;
|
|
for (i=nb-2;i>=0;i--)
|
|
{
|
|
r*=r;
|
|
r*=g(A,A,Qx,Qy);
|
|
|
|
if (bit(n,i))
|
|
r*=g(A,P,Qx,Qy);
|
|
}
|
|
|
|
if (r.iszero()) return FALSE;
|
|
#ifdef MR_COUNT_OPS
|
|
cout << "Miller fpc= " << fpc << endl;
|
|
cout << "Miller fpa= " << fpa << endl;
|
|
cout << "Miller fpx= " << fpx << endl;
|
|
fpa=fpc=fpx=0;
|
|
#endif
|
|
SoftExpo(r,X);
|
|
r=HardExpo(r,X,x);
|
|
#ifdef MR_COUNT_OPS
|
|
cout << "FE fpc= " << fpc << endl;
|
|
cout << "FE fpa= " << fpa << endl;
|
|
cout << "FE fpx= " << fpx << endl;
|
|
fpa=fpc=fpx=0;
|
|
#endif
|
|
return TRUE;
|
|
}
|
|
|
|
//
|
|
// ecap(.) function
|
|
//
|
|
|
|
BOOL ecap(ECn4& P,ECn& Q,Big& x,ZZn2 &X,ZZn24& r)
|
|
{
|
|
BOOL Ok;
|
|
Big xx,yy;
|
|
ZZn Qx,Qy;
|
|
|
|
Q.get(xx,yy); Qx=xx; Qy=yy;
|
|
|
|
Ok=fast_pairing(P,Qx,Qy,x,X,r);
|
|
|
|
if (Ok) return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
// Automatically generated by Luis Dominguez
|
|
|
|
ECn4 HashG2(ECn4& Qx0, Big& x, ZZn2& X){
|
|
//vector=[ 1, 2, 3, 4 ]
|
|
ECn4 r;
|
|
ECn4 xA;
|
|
ECn4 xB;
|
|
ECn4 xC;
|
|
ECn4 t0;
|
|
ECn4 t1;
|
|
ECn4 Qx0_;
|
|
ECn4 Qx1;
|
|
ECn4 Qx1_;
|
|
ECn4 Qx2;
|
|
ECn4 Qx2_;
|
|
ECn4 Qx3;
|
|
ECn4 Qx3_;
|
|
ECn4 Qx4;
|
|
ECn4 Qx4_;
|
|
ECn4 Qx5;
|
|
ECn4 Qx5_;
|
|
ECn4 Qx6;
|
|
ECn4 Qx6_;
|
|
ECn4 Qx7;
|
|
ECn4 Qx7_;
|
|
ECn4 Qx8;
|
|
ECn4 Qx8_;
|
|
|
|
Qx0_=-(Qx0);
|
|
Qx1=x*Qx0;
|
|
Qx1_=-(Qx1);
|
|
Qx2=x*Qx1;
|
|
Qx2_=-(Qx2);
|
|
Qx3=x*Qx2;
|
|
Qx3_=-(Qx3);
|
|
Qx4=x*Qx3;
|
|
Qx4_=-(Qx4);
|
|
Qx5=x*Qx4;
|
|
Qx5_=-(Qx5);
|
|
Qx6=x*Qx5;
|
|
Qx6_=-(Qx6);
|
|
Qx7=x*Qx6;
|
|
Qx7_=-(Qx7);
|
|
Qx8=x*Qx7;
|
|
Qx8_=-(Qx8);
|
|
|
|
xA=Qx0;
|
|
xC=Qx7;
|
|
xA+=xC;
|
|
xC=psi(Qx2,X,4);
|
|
xA+=xC;
|
|
xB=Qx0;
|
|
xC=Qx7;
|
|
xB+=xC;
|
|
xC=psi(Qx2,X,4);
|
|
xB+=xC;
|
|
t0=xA+xB;
|
|
xB=Qx2_;
|
|
xC=Qx3_;
|
|
xB+=xC;
|
|
xC=Qx8_;
|
|
xB+=xC;
|
|
xC=psi(Qx2,X,1);
|
|
xB+=xC;
|
|
xC=psi(Qx3_,X,1);
|
|
xB+=xC;
|
|
xC=psi(Qx1,X,6);
|
|
xB+=xC;
|
|
t0=t0+xB;
|
|
xB=Qx4;
|
|
xC=Qx5_;
|
|
xB+=xC;
|
|
xC=psi(Qx0_,X,4);
|
|
xB+=xC;
|
|
xC=psi(Qx4_,X,4);
|
|
xB+=xC;
|
|
xC=psi(Qx0,X,5);
|
|
xB+=xC;
|
|
xC=psi(Qx1_,X,5);
|
|
xB+=xC;
|
|
xC=psi(Qx2_,X,5);
|
|
xB+=xC;
|
|
xC=psi(Qx3,X,5);
|
|
xB+=xC;
|
|
t0=t0+xB;
|
|
xA=Qx1;
|
|
xC=psi(Qx0_,X,1);
|
|
xA+=xC;
|
|
xC=psi(Qx1,X,1);
|
|
xA+=xC;
|
|
xC=psi(Qx4_,X,1);
|
|
xA+=xC;
|
|
xC=psi(Qx5,X,1);
|
|
xA+=xC;
|
|
xC=psi(Qx0,X,2);
|
|
xA+=xC;
|
|
xC=psi(Qx1_,X,2);
|
|
xA+=xC;
|
|
xC=psi(Qx4_,X,2);
|
|
xA+=xC;
|
|
xC=psi(Qx5,X,2);
|
|
xA+=xC;
|
|
xC=psi(Qx0,X,3);
|
|
xA+=xC;
|
|
xC=psi(Qx1_,X,3);
|
|
xA+=xC;
|
|
xC=psi(Qx4_,X,3);
|
|
xA+=xC;
|
|
xC=psi(Qx5,X,3);
|
|
xA+=xC;
|
|
xC=psi(Qx1,X,4);
|
|
xA+=xC;
|
|
xC=psi(Qx3,X,4);
|
|
xA+=xC;
|
|
xC=psi(Qx0_,X,6);
|
|
xA+=xC;
|
|
xC=psi(Qx2_,X,6);
|
|
xA+=xC;
|
|
xB=Qx4;
|
|
xC=Qx5_;
|
|
xB+=xC;
|
|
xC=psi(Qx0_,X,4);
|
|
xB+=xC;
|
|
xC=psi(Qx4_,X,4);
|
|
xB+=xC;
|
|
xC=psi(Qx0,X,5);
|
|
xB+=xC;
|
|
xC=psi(Qx1_,X,5);
|
|
xB+=xC;
|
|
xC=psi(Qx2_,X,5);
|
|
xB+=xC;
|
|
xC=psi(Qx3,X,5);
|
|
xB+=xC;
|
|
t1=xA+xB;
|
|
t0=t0+t0;
|
|
t0=t0+t1;
|
|
|
|
r=t0;
|
|
return r;
|
|
}
|
|
|
|
//
|
|
// Hash functions
|
|
//
|
|
|
|
Big H2(ZZn24 x)
|
|
{ // Compress and hash an Fp24 to a big number
|
|
sha256 sh;
|
|
ZZn8 u;
|
|
ZZn4 h,l;
|
|
ZZn2 t,b;
|
|
Big a,hash,p;
|
|
ZZn xx[8];
|
|
char s[HASH_LEN];
|
|
int i,j,m;
|
|
|
|
shs256_init(&sh);
|
|
x.get(u); // compress to single ZZn4
|
|
u.get(l,h);
|
|
|
|
l.get(t,b);
|
|
|
|
t.get(xx[0],xx[1]);
|
|
b.get(xx[2],xx[3]);
|
|
|
|
h.get(t,b);
|
|
|
|
t.get(xx[4],xx[5]);
|
|
b.get(xx[6],xx[7]);
|
|
|
|
for (i=0;i<8;i++)
|
|
{
|
|
a=(Big)xx[i];
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs256_process(&sh,m);
|
|
a/=256;
|
|
}
|
|
}
|
|
shs256_hash(&sh,s);
|
|
hash=from_binary(HASH_LEN,s);
|
|
return hash;
|
|
}
|
|
|
|
Big H1(char *string)
|
|
{ // Hash a zero-terminated string to a number < modulus
|
|
Big h,p;
|
|
char s[HASH_LEN];
|
|
int i,j;
|
|
sha256 sh;
|
|
|
|
shs256_init(&sh);
|
|
|
|
for (i=0;;i++)
|
|
{
|
|
if (string[i]==0) break;
|
|
shs256_process(&sh,string[i]);
|
|
}
|
|
shs256_hash(&sh,s);
|
|
p=get_modulus();
|
|
h=1; j=0; i=1;
|
|
forever
|
|
{
|
|
h*=256;
|
|
if (j==HASH_LEN) {h+=i++; j=0;}
|
|
else h+=s[j++];
|
|
if (h>=p) break;
|
|
}
|
|
h%=p;
|
|
return h;
|
|
}
|
|
|
|
// Hash and map a Server Identity to a curve point E_(Fp4)
|
|
|
|
ECn4 hash_and_map4(char *ID)
|
|
{
|
|
int i;
|
|
ECn4 S;
|
|
ZZn4 X;
|
|
ZZn2 t;
|
|
|
|
Big x0=H1(ID);
|
|
|
|
forever
|
|
{
|
|
x0+=1;
|
|
t.set((ZZn)0,(ZZn)x0);
|
|
X.set(t,(ZZn2)0);
|
|
if (!S.set(X)) continue;
|
|
break;
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
// Hash and Map a Client Identity to a curve point E_(Fp) of order q
|
|
|
|
ECn hash_and_map(char *ID,Big cf)
|
|
{
|
|
ECn Q;
|
|
Big x0=H1(ID);
|
|
while (!Q.set(x0,x0)) x0+=1;
|
|
Q*=cf;
|
|
return Q;
|
|
}
|
|
|
|
void endomorph(ECn &A,ZZn &Beta)
|
|
{ // apply endomorphism P(x,y) = (Beta*x,y) where Beta is cube root of unity
|
|
// Actually (Beta*x,-y) = x^4.P
|
|
ZZn x,y;
|
|
x=(A.get_point())->X;
|
|
y=(A.get_point())->Y;
|
|
y=-y;
|
|
x*=Beta;
|
|
copy(getbig(x),(A.get_point())->X);
|
|
copy(getbig(y),(A.get_point())->Y);
|
|
}
|
|
|
|
// Use GLV endomorphism idea for multiplication in G1.
|
|
|
|
ECn G1_mult(ECn &P,Big &e,Big &x,ZZn &Beta)
|
|
{
|
|
// return e*P;
|
|
int i;
|
|
ECn Q;
|
|
Big x4,u[2];
|
|
x4=x*x; x4*=x4;
|
|
u[0]=e%x4; u[1]=e/x4;
|
|
|
|
Q=P;
|
|
endomorph(Q,Beta);
|
|
Q=mul(u[0],P,u[1],Q);
|
|
|
|
return Q;
|
|
}
|
|
|
|
//.. for multiplication in G2
|
|
|
|
ECn4 G2_mult(ECn4 &P,Big e,Big &x,ZZn2 &X)
|
|
{
|
|
// return e*P;
|
|
int i;
|
|
ECn4 Q[8];
|
|
Big u[8];
|
|
|
|
for (i=0;i<8;i++) {u[i]=e%x; e/=x;}
|
|
|
|
Q[0]=P;
|
|
for (i=1;i<8;i++)
|
|
Q[i]=psi(Q[i-1],X,1);
|
|
|
|
// simple multi-addition
|
|
|
|
return mul(8,Q,u);
|
|
}
|
|
|
|
//.. and for exponentiation in GT
|
|
|
|
ZZn24 GT_pow(ZZn24 &res,Big e,Big &x,ZZn2 &X)
|
|
{
|
|
// return pow(res,e);
|
|
int i,j;
|
|
ZZn24 Y[8];
|
|
Big u[8];
|
|
|
|
for (i=0;i<8;i++) {u[i]=e%x; e/=x;}
|
|
|
|
Y[0]=res;
|
|
for (i=1;i<8;i++)
|
|
{Y[i]=Y[i-1]; Y[i].powq(X);}
|
|
|
|
// simple multi-exponentiation
|
|
return pow(8,Y,u);
|
|
}
|
|
|
|
// Fast group membership check for GT
|
|
// check if r is of order q
|
|
// Test r^q=r^{(p+1-t)/cf}= 1
|
|
// so test r^p=r^x and r^cf !=1
|
|
// exploit cf=(x-1)*(x-1)/3
|
|
|
|
BOOL member(ZZn24 &r,Big &x,ZZn2 &X)
|
|
{
|
|
ZZn24 w=r;
|
|
ZZn24 rx;
|
|
if (r*conj(r)!=(ZZn24)1) return FALSE; // not unitary
|
|
w.powq(X);
|
|
rx=pow(r,x);
|
|
if (w!=rx) return FALSE;
|
|
if (r*pow(rx,x)==rx*rx) return FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
miracl* mip=&precision;
|
|
ZZn2 X;
|
|
ECn Alice,Bob,sA,sB;
|
|
ECn4 Server,sS;
|
|
ZZn24 sp,ap,bp,res;
|
|
Big a,b,s,ss,p,q,x,y,B,cf,t,n;
|
|
ZZn Beta;
|
|
int i;
|
|
time_t seed;
|
|
|
|
mip->IOBASE=16;
|
|
x="E000000000058400"; // low Hamming weight = 7
|
|
t=1+x;
|
|
p=(1+x+x*x-pow(x,4)+2*pow(x,5)-pow(x,6)+pow(x,8)-2*pow(x,9)+pow(x,10))/3;
|
|
q=1-pow(x,4)+pow(x,8);
|
|
|
|
n=p+1-t;
|
|
cf=(x-1)*(x-1)/3; //=n/q
|
|
|
|
cf=(x-1); // Neat trick! Whole group is non-cyclic - just has (x-1)^2 as a factor
|
|
// So multiplication by x-1 is sufficient to create a point of order q
|
|
|
|
ecurve((Big)0,(Big)6,p,MR_AFFINE);
|
|
set_frobenius_constant(X);
|
|
Beta=pow((ZZn)2,(p-1)/3);
|
|
Beta*=Beta; // right cube root of unity
|
|
|
|
time(&seed);
|
|
irand((long)seed);
|
|
|
|
ss=rand(q); // TA's super-secret
|
|
|
|
mip->TWIST=MR_SEXTIC_D; // map Server to point on twisted curve E(Fp4)
|
|
|
|
Server=hash_and_map4((char *)"Server");
|
|
Server=HashG2(Server,x,X); // fast multiplication by co-factor
|
|
|
|
// Should be point at infinity
|
|
// cout << "psi^2(Server-t*psi(Server)+p*Server= " << psi(Server,X,2)-t*psi(Server,X,1)+p*Server << endl;
|
|
|
|
Alice=hash_and_map((char *)"Alice",cf);
|
|
Bob= hash_and_map((char *)"Robert",cf);
|
|
|
|
cout << "Alice, Bob and the Server visit Trusted Authority" << endl;
|
|
|
|
sS=G2_mult(Server,ss,x,X);
|
|
sA=G1_mult(Alice,ss,x,Beta);
|
|
sB=G1_mult(Bob,ss,x,Beta);
|
|
|
|
cout << "Alice and Server Key Exchange" << endl;
|
|
|
|
a=rand(q); // Alice's random number
|
|
s=rand(q); // Server's random number
|
|
|
|
if (!ecap(Server,sA,x,X,res)) cout << "Trouble" << endl;
|
|
if (!member(res,x,X))
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
|
|
ap=GT_pow(res,a,x,X);
|
|
|
|
if (!ecap(sS,Alice,x,X,res)) cout << "Trouble" << endl;
|
|
if (!member(res,x,X))
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
|
|
sp=GT_pow(res,s,x,X);
|
|
|
|
cout << "Alice Key= " << H2(GT_pow(sp,a,x,X)) << endl;
|
|
cout << "Server Key= " << H2(GT_pow(ap,s,x,X)) << endl;
|
|
|
|
cout << "Bob and Server Key Exchange" << endl;
|
|
|
|
b=rand(q); // Bob's random number
|
|
s=rand(q); // Server's random number
|
|
|
|
if (!ecap(Server,sB,x,X,res)) cout << "Trouble" << endl;
|
|
if (!member(res,x,X))
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
|
|
bp=GT_pow(res,b,x,X);
|
|
|
|
if (!ecap(sS,Bob,x,X,res)) cout << "Trouble" << endl;
|
|
if (!member(res,x,X))
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
|
|
sp=GT_pow(res,s,x,X);
|
|
|
|
cout << "Bob's Key= " << H2(GT_pow(sp,b,x,X)) << endl;
|
|
cout << "Server Key= " << H2(GT_pow(bp,s,x,X)) << endl;
|
|
|
|
return 0;
|
|
}
|