KGC_TEST/KGCAPP/3rdparty/miracl/source/curve/pairing/ake4mnta.c

952 lines
24 KiB
C

/* C version of ake4mnta.cpp
*
Example for embedded implementation.
Should build immediately with standard mirdef.h file on a PC. For example using MS C
cl /O2 ake4mnta.c ms32.lib
To simulate performance on a PC of an 8-bit computer use
#define MR_LITTLE_ENDIAN
#define MIRACL 8
#define mr_utype char
#define MR_IBITS 32
#define MR_LBITS 32
#define mr_unsign32 unsigned int
#define mr_dltype short
#define MR_STATIC 20
#define MR_ALWAYS_BINARY
#define MR_STRIPPED_DOWN
#define MR_GENERIC_MT
#define MAXBASE ((mr_small)1<<(MIRACL-1))
#define MR_COMBA 20
#define MR_NOASM
#define MR_BITSINCHAR 8
#define MR_NOSUPPORT_COMPRESSION
rem Compile MIRACL modules
mex 20 c mrcomba
cl /c /O2 /W3 mrzzn2.c
cl /c /O2 /W3 mrcore.c
cl /c /O2 /W3 mrarth0.c
cl /c /O2 /W3 mrarth1.c
cl /c /O2 /W3 mrarth2.c
cl /c /O2 /W3 mrxgcd.c
cl /c /O2 /W3 mrbits.c
cl /c /O2 /W3 mrmonty.c
cl /c /O2 /W3 mrcomba.c
cl /c /O2 /W3 mrcurve.c
cl /c /O2 /W3 mrio1.c
cl /c /O2 /W3 mrpower.c
rem
rem Create library 'miracl.lib'
del miracl.lib
lib /OUT:miracl.lib mrxgcd.obj mrarth2.obj mrio1.obj mrcomba.obj
lib /OUT:miracl.lib miracl.lib mrmonty.obj mrarth1.obj mrarth0.obj mrcore.obj
lib /OUT:miracl.lib miracl.lib mrcurve.obj mrbits.obj mrzzn2.obj mrpower.obj
del mr*.obj
cl /O2 ake4mnta.c miracl.lib
For Atmel AVR (atmega128) use
#define MR_LITTLE_ENDIAN
#define MIRACL 8
#define mr_utype char
#define MR_IBITS 16
#define MR_LBITS 32
#define mr_unsign32 unsigned long
#define mr_dltype int
#define mr_qltype long
#define MR_STATIC 20
#define MR_ALWAYS_BINARY
#define MR_STRIPPED_DOWN
#define MR_GENERIC_MT
#define MAXBASE ((mr_small)1<<(MIRACL-1))
#define MR_COMBA 20
#define MR_NOASM
#define MR_BITSINCHAR 8
#define MR_NO_STANDARD_IO
#define MR_NO_FILE_IO
#define MR_NOSUPPORT_COMPRESSION
#define MR_AVR
This last line must be added manually - config.c will not do it automatically
and execute
mex 20 avr4 mrcomba
On an ARM use a header like
#define MR_LITTLE_ENDIAN
#define MIRACL 32
#define mr_utype int
#define MR_IBITS 32
#define MR_LBITS 32
#define mr_unsign32 unsigned int
#define mr_dltype long long
#define MR_STATIC 5
#define MR_ALWAYS_BINARY
#define MR_STRIPPED_DOWN
#define MR_GENERIC_MT
#define MAXBASE ((mr_small)1<<(MIRACL-1))
#define MR_COMBA 5
#define MR_BITSINCHAR 8
#define MR_NOSUPPORT_COMPRESSION
and possible
#define MR_NO_STANDARD_IO
#define MR_NO_FILE_IO
and execute
mex 5 arm mrcomba
Speeded up using ideas from
"Efficient Computation of Tate Pairing in Projective Coordinate over General Characteristic Fields"
by Sanjit Chatterjee1, Palash Sarkar1 and Rana Barua1
*/
#include <stdio.h>
#include <stdlib.h>
#include "miracl.h"
#ifdef MR_COUNT_OPS
int fpm2,fpi2,fpc,fpa,fpx;
#endif
/* Fix the contents of k4mnt.ecs */
/* ROM contains details of a k=4 MNT pairing-friendly curve. In this case p is 160-bits, and
=5 mod 8. The pairing friendly prime-order group is of order (p+1-t)/34 */
#define CF 34
#if MIRACL==32
#define WORDS 5
#define NPW 8 /* Nibbles per Word */
#define ROMSZ 30
static const mr_small romp[]={
0x76A5755D,0x245769E6,0xF33DC5F3,0x42C82027,0xE3F367D5,
0x866BA034,0x14DB64EB,0xDF4CF677,0xE45200C4,0xDABC0397,
0x58290FC5,0x0BD4BB42,0x0EAEF730,0xA014F1E3,0x6B455E0,
0xC1315D34,0x92168B16,0xF191,0x0,0x0,
0xB79C2B47,0x10BEC9C5,0xE0BF4D14,0x67B5A4AC,0xB3657D09,
0xC1315D33,0x92168B16,0xF191,0x0,0x0};
/* Points - in n-residue form */
#define PROMSZ 30
static const mr_small Prom[]={
0x1E6EA84F,0xE7CE6B23,0x7B6AC239,0x805022A9,0x260BF17B,
0x90898C7E,0x9D8C9BC9,0xD482E11C,0x2D4D3F68,0x1D1DA150,
0xC8501310,0x524DD4A,0x3DED1AE2,0x3094317B,0x9DB2C44C,
0x23E533B2,0xC8BD73FB,0xF3D25667,0x1CEE805C,0x24EDB45C,
0x21E3CEBD,0x625F7B2E,0xF924576E,0x35FCAA2,0x67DE6249,
0xF780367B,0x43AD112B,0xD9F11765,0xF0BA13D1,0x1F0355FE};
#endif
#if MIRACL==8
#define WORDS 20
#define NPW 2 /* Nibbles per Word */
#define ROMSZ 120
#ifdef MR_AVR
__attribute__((__progmem__))
#endif
static const mr_small romp[]={
0x5D,0x75,0xA5,0x76,0xE6,0x69,0x57,0x24,0xF3,0xC5,0x3D,0xF3,0x27,0x20,0xC8,0x42,0xD5,0x67,0xF3,0xE3,
0x34,0xA0,0x6B,0x86,0xEB,0x64,0xDB,0x14,0x77,0xF6,0x4C,0xDF,0xC4,0x00,0x52,0xE4,0x97,0x03,0xBC,0xDA,
0xC5,0x0F,0x29,0x58,0x42,0xBB,0xD4,0x0B,0x30,0xF7,0xAE,0x0E,0xE3,0xF1,0x14,0xA0,0xE0,0x55,0xB4,0x06,
0x34,0x5D,0x31,0xC1,0x16,0x8B,0x16,0x92,0x91,0xF1,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x47,0x2B,0x9C,0xB7,0xC5,0xC9,0xBE,0x10,0x14,0x4D,0xBF,0xE0,0xAC,0xA4,0xB5,0x67,0x09,0x7D,0x65,0xB3,
0x33,0x5D,0x31,0xC1,0x16,0x8B,0x16,0x92,0x91,0xF1,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
#define PROMSZ 120
#ifdef MR_AVR
__attribute__((__progmem__))
#endif
static const mr_small Prom[]={
0x4F,0xA8,0x6E,0x1E,0x23,0x6B,0xCE,0xE7,0x39,0xC2,0x6A,0x7B,0xA9,0x22,0x50,0x80,0x7B,0xF1,0xB,0x26,
0x7E,0x8C,0x89,0x90,0xC9,0x9B,0x8C,0x9D,0x1C,0xE1,0x82,0xD4,0x68,0x3F,0x4D,0x2D,0x50,0xA1,0x1D,0x1D,
0x10,0x13,0x50,0xC8,0x4A,0xDD,0x24,0x5,0xE2,0x1A,0xED,0x3D,0x7B,0x31,0x94,0x30,0x4C,0xC4,0xB2,0x9D,
0xB2,0x33,0xE5,0x23,0xFB,0x73,0xBD,0xC8,0x67,0x56,0xD2,0xF3,0x5C,0x80,0xEE,0x1C,0x5C,0xB4,0xED,0x24,
0xBD,0xCE,0xE3,0x21,0x2E,0x7B,0x5F,0x62,0x6E,0x57,0x24,0xF9,0xA2,0xCA,0x5F,0x3,0x49,0x62,0xDE,0x67,
0x7B,0x36,0x80,0xF7,0x2B,0x11,0xAD,0x43,0x65,0x17,0xF1,0xD9,0xD1,0x13,0xBA,0xF0,0xFE,0x55,0x3,0x1F};
#endif
/* Fp4 support functions */
typedef struct
{
zzn2 x;
zzn2 y;
BOOL unitary;
} zzn4;
#ifndef MR_NO_STANDARD_IO
void zzn2_out(_MIPD_ char *p,zzn2 *x)
{
printf(p); printf("\n");
redc(_MIPP_ x->a,x->a);
redc(_MIPP_ x->b,x->b);
otnum(_MIPP_ x->a,stdout);
otnum(_MIPP_ x->b,stdout);
nres(_MIPP_ x->a,x->a);
nres(_MIPP_ x->b,x->b);
}
#endif
/* Irreducible over zzn2 is x^2+n */
/* zzn4 is towered on top of this with irreducible X^2+sqrt(n) p=5 mod 8, or X^2+(1+sqrt(n)) p=3,7 mod 8 */
/* same as txx(.) function in C++ */
void zzn2_times_irp(_MIPD_ zzn2 *u)
{
zzn2 t;
switch (mr_mip->pmod8)
{
case 5: /* times sqrt(n) */
zzn2_timesi(_MIPP_ u);
break;
case 3: /* times 1+sqrt(n) */
case 7:
t.a=mr_mip->w5;
t.b=mr_mip->w6;
zzn2_copy(u,&t);
zzn2_timesi(_MIPP_ &t);
zzn2_add(_MIPP_ u,&t,u);
break;
default:
break;
}
}
void zzn4_copy(zzn4 *u,zzn4 *w)
{
if (u==w) return;
zzn2_copy(&(u->x),&(w->x));
zzn2_copy(&(u->y),&(w->y));
w->unitary=u->unitary;
}
void zzn4_from_int(_MIPD_ int i,zzn4 *w)
{
zzn2_from_int(_MIPP_ i,&(w->x));
zzn2_zero(&(w->y));
if (i==1) w->unitary=TRUE;
else w->unitary=FALSE;
}
void zzn4_conj(_MIPD_ zzn4 *u,zzn4 *w)
{
zzn4_copy(u,w);
zzn2_negate(_MIPP_ &(w->y),&(w->y));
}
void zzn4_mul(_MIPD_ zzn4 *u,zzn4 *v,zzn4 *w)
{
zzn2 t1,t2,t3;
t1.a=mr_mip->w3;
t1.b=mr_mip->w4;
t2.a=mr_mip->w8;
t2.b=mr_mip->w9;
if (u==v)
{
if (u->unitary)
{ /* this is faster.. - see Lenstra & Stam */
zzn4_copy(u,w);
zzn2_mul(_MIPP_ &(w->y),&(w->y),&t1);
zzn2_add(_MIPP_ &(w->y),&(w->x),&(w->y));
zzn2_mul(_MIPP_ &(w->y),&(w->y),&(w->y));
zzn2_sub(_MIPP_ &(w->y),&t1,&(w->y));
zzn2_timesi(_MIPP_ &t1);
zzn2_copy(&t1,&(w->x));
zzn2_sub(_MIPP_ &(w->y),&(w->x),&(w->y));
zzn2_add(_MIPP_ &(w->x),&(w->x),&(w->x));
zzn2_sadd(_MIPP_ &(w->x),mr_mip->one,&(w->x));
zzn2_ssub(_MIPP_ &(w->y),mr_mip->one,&(w->y));
}
else
{
zzn4_copy(u,w);
zzn2_copy(&(w->y),&t2); // t2=b;
zzn2_add(_MIPP_ &(w->x),&t2,&t1); // t1=a+b
zzn2_times_irp(_MIPP_ &t2); // t2=txx(b);
zzn2_add(_MIPP_ &t2,&(w->x),&t2); // t2=a+txx(b)
zzn2_mul(_MIPP_ &(w->y),&(w->x),&(w->y)); // b*=a
zzn2_mul(_MIPP_ &t1,&t2,&(w->x)); // a=t1*t2
zzn2_copy(&(w->y),&t2); //t2=b
zzn2_sub(_MIPP_ &(w->x),&t2,&(w->x)); //a-=b
zzn2_times_irp(_MIPP_ &t2); // t2=txx(b)
zzn2_sub(_MIPP_ &(w->x),&t2,&(w->x)); // a-=txx(b);
zzn2_add(_MIPP_ &(w->y),&(w->y),&(w->y)); // b+=b;
}
}
else
{
t3.a=mr_mip->w10;
t3.b=mr_mip->w11;
zzn2_copy(&(u->x),&t1);
zzn2_copy(&(u->y),&t2);
zzn2_mul(_MIPP_ &t1,&(v->x),&t1);
zzn2_mul(_MIPP_ &t2,&(v->y),&t2);
zzn2_copy(&(v->x),&t3);
zzn2_add(_MIPP_ &t3,&(v->y),&t3);
zzn2_add(_MIPP_ &(u->y),&(u->x),&(w->y));
zzn2_mul(_MIPP_ &(w->y),&t3,&(w->y));
zzn2_sub(_MIPP_ &(w->y),&t1,&(w->y));
zzn2_sub(_MIPP_ &(w->y),&t2,&(w->y));
zzn2_copy(&t1,&(w->x));
zzn2_times_irp(_MIPP_ &t2);
zzn2_add(_MIPP_ &(w->x),&t2,&(w->x));
if (u->unitary && v->unitary) w->unitary=TRUE;
else w->unitary=FALSE;
}
}
/* zzn4 powering of unitary elements */
void zzn4_powu(_MIPD_ zzn4 *x,big k,zzn4 *u)
{
zzn4 t[5],u2;
big k3;
int i,j,n,nb,nbw,nzs;
#ifndef MR_STATIC
char *mem=memalloc(_MIPP_ 25);
#else
char mem[MR_BIG_RESERVE(25)];
memset(mem,0,MR_BIG_RESERVE(25));
#endif
if (size(k)==0)
{
zzn4_from_int(_MIPP_ 1,u);
return;
}
zzn4_copy(x,u);
if (size(k)==1) return;
for (j=i=0;i<5;i++)
{
t[i].x.a=mirvar_mem(_MIPP_ mem,j++);
t[i].x.b=mirvar_mem(_MIPP_ mem,j++);
t[i].y.a=mirvar_mem(_MIPP_ mem,j++);
t[i].y.b=mirvar_mem(_MIPP_ mem,j++);
t[i].unitary=FALSE;
}
u2.x.a=mirvar_mem(_MIPP_ mem,j++);
u2.x.b=mirvar_mem(_MIPP_ mem,j++);
u2.y.a=mirvar_mem(_MIPP_ mem,j++);
u2.y.b=mirvar_mem(_MIPP_ mem,j++);
u2.unitary=FALSE;
k3=mirvar_mem(_MIPP_ mem,j);
premult(_MIPP_ k,3,k3);
zzn4_mul(_MIPP_ u,u,&u2);
zzn4_copy(u,&t[0]);
for (i=1;i<=4;i++)
zzn4_mul(_MIPP_ &u2,&t[i-1],&t[i]);
nb=logb2(_MIPP_ k3);
for (i=nb-2;i>=1;)
{
n=mr_naf_window(_MIPP_ k,k3,i,&nbw,&nzs,5);
for (j=0;j<nbw;j++) zzn4_mul(_MIPP_ u,u,u);
if (n>0) zzn4_mul(_MIPP_ u,&t[n/2],u);
if (n<0)
{
zzn4_conj(_MIPP_ &t[-n/2],&u2);
zzn4_mul(_MIPP_ u,&u2,u);
}
i-=nbw;
if (nzs)
{
for (j=0;j<nzs;j++) zzn4_mul(_MIPP_ u,u,u);
i-=nzs;
}
}
#ifndef MR_STATIC
memkill(_MIPP_ mem,25);
#else
memset(mem,0,MR_BIG_RESERVE(25));
#endif
}
/* Lucas-style ladder exponentiation of traces */
void zzn2_powl(_MIPD_ zzn2 *x,big e,zzn2 *w)
{
int i,s;
zzn2 t1,t3,t4;
t1.a=mr_mip->w7;
t1.b=mr_mip->w8;
t3.a=mr_mip->w10;
t3.b=mr_mip->w11;
t4.a=mr_mip->w13;
t4.b=mr_mip->w14;
zzn2_from_int(_MIPP_ 1,&t1);
s=size(e);
if (s==0)
{
zzn2_copy(&t1,w);
return;
}
zzn2_copy(x,w);
if (s==1 || s==(-1)) return;
i=logb2(_MIPP_ e)-1;
zzn2_copy(w,&t3);
zzn2_mul(_MIPP_ w,w,&t4);
zzn2_add(_MIPP_ &t4,&t4,&t4);
zzn2_sub(_MIPP_ &t4,&t1,&t4);
while (i--)
{
if (mr_testbit(_MIPP_ e,i))
{
zzn2_mul(_MIPP_ &t3,&t4,&t3);
zzn2_add(_MIPP_ &t3,&t3,&t3);
zzn2_sub(_MIPP_ &t3,w,&t3);
zzn2_mul(_MIPP_ &t4,&t4,&t4);
zzn2_add(_MIPP_ &t4,&t4,&t4);
zzn2_sub(_MIPP_ &t4,&t1,&t4);
}
else
{
zzn2_mul(_MIPP_ &t4,&t3,&t4);
zzn2_add(_MIPP_ &t4,&t4,&t4);
zzn2_sub(_MIPP_ &t4,w,&t4);
zzn2_mul(_MIPP_ &t3,&t3,&t3);
zzn2_add(_MIPP_ &t3,&t3,&t3);
zzn2_sub(_MIPP_ &t3,&t1,&t3);
}
}
zzn2_copy(&t3,w);
}
void zzn4_powq(_MIPD_ big fr,zzn4 *w)
{
zzn2_conj(_MIPP_ &(w->x),&(w->x));
zzn2_conj(_MIPP_ &(w->y),&(w->y));
nres(_MIPP_ fr,mr_mip->w1);
zzn2_smul(_MIPP_ &(w->y),mr_mip->w1,&(w->y));
}
void zzn4_inv(_MIPD_ zzn4 *u)
{
zzn2 t1,t2;
if (u->unitary)
{
zzn4_conj(_MIPP_ u,u);
return;
}
t1.a=mr_mip->w8;
t1.b=mr_mip->w9;
t2.a=mr_mip->w3;
t2.b=mr_mip->w4;
zzn2_mul(_MIPP_ &(u->x),&(u->x),&t1);
zzn2_mul(_MIPP_ &(u->y),&(u->y),&t2);
zzn2_times_irp(_MIPP_ &t2);
zzn2_sub(_MIPP_ &t1,&t2,&t1);
zzn2_inv(_MIPP_ &t1);
zzn2_mul(_MIPP_ &(u->x),&t1,&(u->x));
zzn2_negate(_MIPP_ &t1,&t1);
zzn2_mul(_MIPP_ &(u->y),&t1,&(u->y));
}
/* Original from A. Devegili. Thanks Augusto! Projective point addition */
BOOL ecurve_fp2_add(_MIPD_ zzn2 *Zx, zzn2 *Zy, zzn2 *Zz, zzn2 *x, zzn2 *y, zzn2 *z, zzn2 *lam,zzn2 *ex1,zzn2 *ex2)
{
BOOL doubling,normed;
zzn2 Xzz, Yzzz, xZZ, yZZZ, zz, ZZ;
zzn2 t1, t2, t3, x3;
#ifndef MR_STATIC
char *mem = memalloc(_MIPP_ 20);
#else
char mem[MR_BIG_RESERVE(20)];
memset(mem, 0, MR_BIG_RESERVE(20));
#endif
Xzz.a = mirvar_mem(_MIPP_ mem, 0);
Xzz.b = mirvar_mem(_MIPP_ mem, 1);
Yzzz.a = mirvar_mem(_MIPP_ mem, 2);
Yzzz.b = mirvar_mem(_MIPP_ mem, 3);
xZZ.a = mirvar_mem(_MIPP_ mem, 4);
xZZ.b = mirvar_mem(_MIPP_ mem, 5);
yZZZ.a = mirvar_mem(_MIPP_ mem, 6);
yZZZ.b = mirvar_mem(_MIPP_ mem, 7);
zz.a = mirvar_mem(_MIPP_ mem, 8);
zz.b = mirvar_mem(_MIPP_ mem, 9);
ZZ.a = mirvar_mem(_MIPP_ mem, 10);
ZZ.b = mirvar_mem(_MIPP_ mem, 11);
t1.a = mirvar_mem(_MIPP_ mem, 12);
t1.b = mirvar_mem(_MIPP_ mem, 13);
t2.a = mirvar_mem(_MIPP_ mem, 14);
t2.b = mirvar_mem(_MIPP_ mem, 15);
t3.a = mirvar_mem(_MIPP_ mem, 16);
t3.b = mirvar_mem(_MIPP_ mem, 17);
x3.a = mirvar_mem(_MIPP_ mem, 18);
x3.b = mirvar_mem(_MIPP_ mem, 19);
doubling=FALSE;
if (z==Zz) doubling=TRUE;
if (!doubling)
{ // maybe we are really doubling? Or P-=P?
if (!zzn2_isunity(_MIPP_ Zz))
{
zzn2_mul(_MIPP_ Zz, Zz, &ZZ); // ZZ = Zz^2
zzn2_mul(_MIPP_ x, &ZZ, &xZZ); // xZZ = x * Zz^2
zzn2_mul(_MIPP_ &ZZ, Zz, &yZZZ); // yZZZ = Zz^3
zzn2_mul(_MIPP_ &yZZZ, y, &yZZZ); // yZZZ = y * Zz^3
normed=FALSE;
}
else
{
zzn2_copy(x,&xZZ);
zzn2_copy(y,&yZZZ);
normed=TRUE;
}
if (!zzn2_isunity(_MIPP_ z))
{
zzn2_mul(_MIPP_ z, z, &zz); // zz = z^2
zzn2_mul(_MIPP_ Zx, &zz, &Xzz); // Xzz = Zx * z^2
zzn2_mul(_MIPP_ &zz, z, &Yzzz); // Yzzz = z^3
zzn2_mul(_MIPP_ &Yzzz, Zy, &Yzzz); // Yzzz = Zy * z^3
}
else
{
zzn2_copy(Zx,&Xzz);
zzn2_copy(Zy,&Yzzz);
}
if (zzn2_compare(&Xzz,&xZZ))
{
if (!zzn2_compare(&Yzzz,&yZZZ) || zzn2_iszero(y))
{
zzn2_zero(x);
zzn2_zero(y);
zzn2_zero(z);
zzn2_from_int(_MIPP_ 1,lam);
#ifndef MR_STATIC
memkill(_MIPP_ mem, 20);
#else
memset(mem, 0, MR_BIG_RESERVE(20));
#endif
return doubling;
}
else
doubling=TRUE;
}
}
if (!doubling)
{ // point addition
zzn2_sub(_MIPP_ &xZZ, &Xzz, &t1); // t1 = Xzz - xZZ
zzn2_sub(_MIPP_ &yZZZ, &Yzzz, lam); // lam = yZZZ - yZZZ
zzn2_mul(_MIPP_ z,&t1,z);
if (!normed) zzn2_mul(_MIPP_ z,&ZZ,z);
zzn2_mul(_MIPP_ &t1,&t1,&t2);
zzn2_add(_MIPP_ &xZZ,&Xzz,&t3);
zzn2_mul(_MIPP_ &t3,&t2,&t3);
zzn2_mul(_MIPP_ lam, lam, &x3); // x3 = lam^2
zzn2_sub(_MIPP_ &x3,&t3,&x3);
zzn2_sub(_MIPP_ &t3,&x3,&t3);
zzn2_sub(_MIPP_ &t3,&x3,&t3);
zzn2_mul(_MIPP_ &t3,lam,&t3);
zzn2_mul(_MIPP_ &t2,&t1,&t2);
zzn2_add(_MIPP_ &yZZZ,&Yzzz,&t1);
zzn2_mul(_MIPP_ &t1,&t2,&t1);
zzn2_sub(_MIPP_ &t3,&t1,y);
zzn2_div2(_MIPP_ y);
zzn2_copy(&x3,x);
}
else
{ // point doubling
zzn2_mul(_MIPP_ y, y, &t2); // t2 = y^2
/* its on the twist so A=6! */
zzn2_mul(_MIPP_ z,z,ex2);
zzn2_mul(_MIPP_ x,x,lam);
zzn2_mul(_MIPP_ ex2,ex2,&t1);
zzn2_add(_MIPP_ &t1,&t1,&t1);
zzn2_add(_MIPP_ lam,&t1,lam);
zzn2_copy(lam,&t1);
zzn2_add(_MIPP_ lam,lam,lam);
zzn2_add(_MIPP_ lam,&t1,lam);
zzn2_mul(_MIPP_ x, &t2, &t1); // t1 = x * y^2
zzn2_add(_MIPP_ &t1, &t1, &t1); // t1 = 2(x*y^2)
zzn2_add(_MIPP_ &t1, &t1, &t1); // t1 = 4(x*y^2)
// x = lam^2 - t1 - t1
zzn2_mul(_MIPP_ lam, lam, x); // x = lam^2
zzn2_sub(_MIPP_ x, &t1, x); // x = lam^2 - t1
zzn2_sub(_MIPP_ x, &t1, x); // x = lam^2 - 2t1
zzn2_mul(_MIPP_ z, y , z); // z = yz
zzn2_add(_MIPP_ z, z, z); // z = 2yz
// 8 * y^2
zzn2_add(_MIPP_ &t2, &t2, &t2); // t2 = 2y^2
zzn2_copy(&t2,ex1);
zzn2_mul(_MIPP_ &t2, &t2, &t2); // t2 = 4y^2
zzn2_add(_MIPP_ &t2, &t2, &t2); // t2 = 8y^2
// y = lam*(t - x) - y^2
zzn2_sub(_MIPP_ &t1, x, y); // y = t1 - x
zzn2_mul(_MIPP_ y, lam, y); // y = lam(t1 - x)
zzn2_sub(_MIPP_ y, &t2, y); // y = lam(t1 - x) * y^2
}
#ifndef MR_STATIC
memkill(_MIPP_ mem, 20);
#else
memset(mem, 0, MR_BIG_RESERVE(20));
#endif
return doubling;
}
void g(_MIPD_ zzn2 *Ax,zzn2 *Ay,zzn2 *Az,zzn2 *Bx,zzn2 *By,zzn2 *Bz,big Px,big Py,zzn4 *w)
{
BOOL Doubling;
zzn2 lam,extra1,extra2,Kx,nn,dd;
#ifndef MR_STATIC
char *mem = memalloc(_MIPP_ 12);
#else
char mem[MR_BIG_RESERVE(12)];
memset(mem, 0, MR_BIG_RESERVE(12));
#endif
lam.a=mirvar_mem(_MIPP_ mem,0);
lam.b=mirvar_mem(_MIPP_ mem,1);
extra1.a=mirvar_mem(_MIPP_ mem,2);
extra1.b=mirvar_mem(_MIPP_ mem,3);
extra2.a=mirvar_mem(_MIPP_ mem,4);
extra2.b=mirvar_mem(_MIPP_ mem,5);
Kx.a=mirvar_mem(_MIPP_ mem,6);
Kx.b=mirvar_mem(_MIPP_ mem,7);
nn.a=mirvar_mem(_MIPP_ mem,8);
nn.b=mirvar_mem(_MIPP_ mem,9);
dd.a=mirvar_mem(_MIPP_ mem,10);
dd.b=mirvar_mem(_MIPP_ mem,11);
zzn2_copy(Ax,&Kx);
Doubling=ecurve_fp2_add(_MIPP_ Bx,By,Bz,Ax,Ay,Az,&lam,&extra1,&extra2);
/* Get extra information from the point addition, for use in the line functions */
if (!Doubling)
{
zzn2_smul(_MIPP_ Az,Py,&nn);
zzn2_timesi(_MIPP_ &nn);
zzn2_copy(Bx,&dd);
zzn2_timesi(_MIPP_ &dd);
zzn2_sadd(_MIPP_ &dd,Px,&dd);
zzn2_mul(_MIPP_ &lam,&dd,&lam);
zzn2_copy(By,&dd);
zzn2_timesi(_MIPP_ &dd);
zzn2_mul(_MIPP_ &dd,Az,&dd);
zzn2_sub(_MIPP_ &lam,&dd,&dd);
}
else
{
zzn2_smul(_MIPP_ &extra2,Py,&nn);
zzn2_mul(_MIPP_ &nn,Az,&nn);
zzn2_timesi(_MIPP_ &nn);
zzn2_timesi(_MIPP_ &Kx);
zzn2_smul(_MIPP_ &extra2,Px,&dd);
zzn2_add(_MIPP_ &dd,&Kx,&dd);
zzn2_mul(_MIPP_ &lam,&dd,&lam);
zzn2_timesi(_MIPP_ &extra1);
zzn2_sub(_MIPP_ &lam,&extra1,&dd);
}
zzn2_copy(&nn,&(w->x));
zzn2_copy(&dd,&(w->y));
#ifndef MR_STATIC
memkill(_MIPP_ mem,12);
#else
memset(mem,0,MR_BIG_RESERVE(12));
#endif
return;
}
void fast_tate_pairing(_MIPD_ zzn2 *Qx,zzn2 *Qy,epoint *P,big T,big fr,big delta,zzn4 *w,zzn4* res)
{
int i,j,nb;
zzn2 Ax,Ay,Az,Qz;
zzn Px,Py;
#ifndef MR_STATIC
char *mem=memalloc(_MIPP_ 10);
#else
char mem[MR_BIG_RESERVE(10)];
memset(mem,0,MR_BIG_RESERVE(10));
#endif
#ifdef MR_COUNT_OPS
fpa=fpc=fpx=0;
#endif
Ax.a=mirvar_mem(_MIPP_ mem,0);
Ax.b=mirvar_mem(_MIPP_ mem,1);
Ay.a=mirvar_mem(_MIPP_ mem,2);
Ay.b=mirvar_mem(_MIPP_ mem,3);
Az.a=mirvar_mem(_MIPP_ mem,4);
Az.b=mirvar_mem(_MIPP_ mem,5);
Qz.a=mirvar_mem(_MIPP_ mem,6);
Qz.b=mirvar_mem(_MIPP_ mem,7);
Px=mirvar_mem(_MIPP_ mem,8);
Py=mirvar_mem(_MIPP_ mem,9);
copy(P->X,Px);
copy(P->Y,Py);
nres_modadd(_MIPP_ Px,Px,Px); /* removes a factor of 2 from g() */
nres_modadd(_MIPP_ Py,Py,Py);
zzn2_from_int(_MIPP_ 1,&Qz);
zzn2_copy(Qx,&Ax);
zzn2_copy(Qy,&Ay);
zzn2_copy(&Qz,&Az);
zzn4_from_int(_MIPP_ 1,res);
/* Simple Miller loop */
nb=logb2(_MIPP_ T);
for (i=nb-2;i>=0;i--)
{
zzn4_mul(_MIPP_ res,res,res);
g(_MIPP_ &Ax,&Ay,&Az,&Ax,&Ay,&Az,Px,Py,w);
zzn4_mul(_MIPP_ res,w,res);
if (mr_testbit(_MIPP_ T,i))
{
g(_MIPP_ &Ax,&Ay,&Az,Qx,Qy,&Qz,Px,Py,w);
zzn4_mul(_MIPP_ res,w,res);
}
}
#ifdef MR_COUNT_OPS
printf("Millers loop Cost\n");
printf("fpc= %d\n",fpc);
printf("fpa= %d\n",fpa);
printf("fpx= %d\n",fpx);
fpa=fpc=fpx=0;
#endif
zzn4_copy(res,w);
zzn4_powq(_MIPP_ fr,w); zzn4_powq(_MIPP_ fr,w);
zzn4_inv(_MIPP_ res);
zzn4_mul(_MIPP_ res,w,res); /* ^(p*p-1) */
res->unitary=TRUE;
zzn4_mul(_MIPP_ res,res,res);
zzn4_copy(res,w);
zzn4_mul(_MIPP_ res,res,res);
zzn4_mul(_MIPP_ res,res,res);
zzn4_mul(_MIPP_ res,res,res);
zzn4_mul(_MIPP_ res,res,res);
zzn4_mul(_MIPP_ res,w,res); /* res=powu(res,CF) for CF=34 */
#ifndef MR_STATIC
memkill(_MIPP_ mem,10);
#else
memset(mem,0,MR_BIG_RESERVE(10));
#endif
}
void ecap(_MIPD_ zzn2 *Qx,zzn2 *Qy,epoint *P,big T,big fr,big delta,zzn2* r)
{
zzn4 res,w;
#ifndef MR_STATIC
char *mem=memalloc(_MIPP_ 8);
#else
char mem[MR_BIG_RESERVE(8)];
memset(mem,0,MR_BIG_RESERVE(8));
#endif
res.x.a=mirvar_mem(_MIPP_ mem,0);
res.x.b=mirvar_mem(_MIPP_ mem,1);
res.y.a=mirvar_mem(_MIPP_ mem,2);
res.y.b=mirvar_mem(_MIPP_ mem,3);
w.x.a=mirvar_mem(_MIPP_ mem,4);
w.x.b=mirvar_mem(_MIPP_ mem,5);
w.y.a=mirvar_mem(_MIPP_ mem,6);
w.y.b=mirvar_mem(_MIPP_ mem,7);
res.unitary=FALSE;
w.unitary=FALSE;
epoint_norm(_MIPP_ P);
fast_tate_pairing(_MIPP_ Qx,Qy,P,T,fr,delta,&w,&res);
zzn4_copy(&res,&w);
zzn4_powq(_MIPP_ fr,&res);
zzn4_powu(_MIPP_ &w,delta,&w);
zzn4_mul(_MIPP_ &res,&w,&res);
zzn2_copy(&(res.x),r);
#ifdef MR_COUNT_OPS
printf("Final Exponentiation cost\n");
printf("fpc= %d\n",fpc);
printf("fpa= %d\n",fpa);
printf("fpx= %d\n",fpx);
fpa=fpc=fpx=0;
#endif
#ifndef MR_STATIC
memkill(_MIPP_ mem,8);
#else
memset(mem,0,MR_BIG_RESERVE(8));
#endif
}
int main()
{
#ifdef MR_GENERIC_MT
miracl instance;
#endif
big p,A,B,fr,q,delta,t,T;
zzn2 res,Qx,Qy;
epoint *P;
int i,romptr;
#ifndef MR_STATIC
#ifdef MR_GENERIC_MT
miracl *mr_mip=mirsys(&instance,WORDS*NPW,16);
#else
miracl *mr_mip=mirsys(WORDS*NPW,16);
#endif
char *mem=memalloc(_MIPP_ 14);
#else
#ifdef MR_GENERIC_MT
miracl *mr_mip=mirsys(&instance,MR_STATIC*NPW,16);
#else
miracl *mr_mip=mirsys(MR_STATIC*NPW,16);
#endif
char mem[MR_BIG_RESERVE(14)]; /* reserve space on the stack for 14 bigs */
char mem1[MR_ECP_RESERVE(1)]; /* reserve space on stack for 1 curve points */
memset(mem,0,MR_BIG_RESERVE(14)); /* clear this memory */
memset(mem1,0,MR_ECP_RESERVE(1));
#endif
p=mirvar_mem(_MIPP_ mem,0);
A=mirvar_mem(_MIPP_ mem,1);
B=mirvar_mem(_MIPP_ mem,2);
T=mirvar_mem(_MIPP_ mem,3);
q=mirvar_mem(_MIPP_ mem,4);
fr=mirvar_mem(_MIPP_ mem,5);
delta=mirvar_mem(_MIPP_ mem,6);
res.a=mirvar_mem(_MIPP_ mem,7);
res.b=mirvar_mem(_MIPP_ mem,8);
t=mirvar_mem(_MIPP_ mem,9);
Qx.a=mirvar_mem(_MIPP_ mem,10);
Qx.b=mirvar_mem(_MIPP_ mem,11);
Qy.a=mirvar_mem(_MIPP_ mem,12);
Qy.b=mirvar_mem(_MIPP_ mem,13);
P=epoint_init_mem(_MIPP_ mem1,0);
convert(_MIPP_ -3,A);
romptr=0;
init_big_from_rom(p,WORDS,romp,ROMSZ,&romptr);
init_big_from_rom(B,WORDS,romp,ROMSZ,&romptr);
init_big_from_rom(q,WORDS,romp,ROMSZ,&romptr);
init_big_from_rom(delta,WORDS,romp,ROMSZ,&romptr);
init_big_from_rom(fr,WORDS,romp,ROMSZ,&romptr);
init_big_from_rom(T,WORDS,romp,ROMSZ,&romptr);
#ifndef MR_NO_STANDARD_IO
printf("ROM size= %d\n",sizeof(romp)+sizeof(Prom));
printf("sizeof(miracl)= %d\n",sizeof(miracl));
#endif
ecurve_init(_MIPP_ A,B,p,MR_PROJECTIVE);
romptr=0;
init_point_from_rom(P,WORDS,Prom,PROMSZ,&romptr);
init_big_from_rom(Qx.a,WORDS,Prom,PROMSZ,&romptr);
init_big_from_rom(Qx.b,WORDS,Prom,PROMSZ,&romptr);
init_big_from_rom(Qy.a,WORDS,Prom,PROMSZ,&romptr);
init_big_from_rom(Qy.b,WORDS,Prom,PROMSZ,&romptr);
#ifdef MR_COUNT_OPS
fpa=fpc=fpx=0;
#endif
ecap(_MIPP_ &Qx,&Qy,P,T,fr,delta,&res);
/*
#ifdef MR_COUNT_OPS
printf("fpc= %d\n",fpc);
printf("fpa= %d\n",fpa);
printf("fpx= %d\n",fpx);
fpa=fpc=fpx=0;
#endif
*/
bigbits(_MIPP_ 160,t);
zzn2_powl(_MIPP_ &res,t,&res);
#ifndef MR_NO_STANDARD_IO
zzn2_out(_MIPP_ "res= ",&res);
#endif
ecurve_mult(_MIPP_ t,P,P);
ecap(_MIPP_ &Qx,&Qy,P,T,fr,delta,&res);
#ifndef MR_NO_STANDARD_IO
zzn2_out(_MIPP_ "res= ",&res);
#endif
#ifndef MR_STATIC
memkill(_MIPP_ mem,14);
ecp_memkill(_MIPP_ mem1,1);
#else
memset(mem,0,MR_BIG_RESERVE(14)); /* clear this stack memory */
memset(mem1,0,MR_ECP_RESERVE(1));
#endif
return 0;
}