KGC_TEST/KGCAPP/3rdparty/miracl/source/curve/pairing/ake6mntx.cpp

626 lines
12 KiB
C++

/*
Scott's AKE Client/Server testbed
See http://eprint.iacr.org/2002/164
Compile as
cl /O2 /GX /DZZNS=5 ake6mntx.cpp zzn6a.cpp ecn3.cpp zzn3.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
using COMBA build
MNT Curve - Tate pairing
Thanks to Drew Sutherland for providing the MNT curve
Irreducible binomial MUST be of the form x^6+2. This excludes many of the curves
found using the mnt utility!
Modified to prevent sub-group confinement attack
NOTE: Key exchange bandwidth could be reduced further using ideas from
"Doing more with Fewer Bits", Brouwer, Pellikaan & Verheul, Asiacrypt
'99
NOTE: This version uses a "compositum". That is the ZZn6 class is a cubic tower over ZZn2, but can
also be considered as a quadratic tower over ZZn3. The routine shuffle converts from one form to the other.
The former is fastest for ZZn6 arithmetic, the latter form is required for handling the second parameter
to the pairing, which is on the quadratic twist E(Fp3)
*/
#include <iostream>
#include <fstream>
#include <string.h>
#include "ecn.h"
#include <ctime>
#include "ecn3.h"
#include "zzn6a.h"
Miracl precision(5,0);
#ifdef MR_COUNT_OPS
extern "C"
{
int fpc,fpa,fpx,fpm2,fpi2;
}
#endif
// Using SHA-1 as basic hash algorithm
#define HASH_LEN 20
//
// Define one or the other of these
//
// Which is faster depends on the I/M ratio - See imratio.c
// Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE
//
#ifdef MR_AFFINE_ONLY
#define AFFINE
#else
#define PROJECTIVE
#endif
//
// Tate Pairing Code
//
// Extract ECn point in internal ZZn format
//
void extract(ECn& A,ZZn& x,ZZn& y)
{
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
#ifdef PROJECTIVE
void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z)
{
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
#endif
void set_frobenius_constant(ZZn2 &X)
{
Big p=get_modulus();
switch (get_mip()->pmod8)
{
case 5:
X.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2
break;
case 3: // = (1+sqrt(-1))^(p-1)/2
X.set((Big)1,(Big)1);
break;
case 7:
X.set((Big)2,(Big)1); // = (2+sqrt(-1))^(p-1)/2
default: break;
}
X=pow(X,(p-1)/3);
}
ZZn6 shuffle(const ZZn3 &first, const ZZn3 &second)
{ // shuffle from a pair ZZn3's to three ZZn2's, as required by ZZn6
ZZn6 w;
ZZn x0,x1,x2,x3,x4,x5;
ZZn2 t0,t1,t2;
first.get(x0,x2,x4);
second.get(x1,x3,x5);
t0.set(x0,x3);
t1.set(x1,x4);
t2.set(x2,x5);
w.set(t0,t1,t2);
return w;
}
void unshuffle(ZZn6 &S,ZZn3 &first,ZZn3 &second)
{ // unshuffle a ZZn6 into two ZZn3's
ZZn x0,x1,x2,x3,x4,x5;
ZZn2 t0,t1,t2;
S.get(t0,t1,t2);
t0.get(x0,x3);
t1.get(x1,x4);
t2.get(x2,x5);
first.set(x0,x2,x4);
second.set(x1,x3,x5);
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn6 line(ECn& A,ECn& C,ECn& B,int type,ZZn& slope,ZZn& ex1,ZZn& ex2,ZZn3& Qx,ZZn3& Qy)
{
ZZn6 w;
#ifdef AFFINE
ZZn3 nn=Qx;
ZZn x,y;
extract(A,x,y);
nn-=x;
nn*=slope;
nn+=y;
nn=-nn;
w=shuffle(nn,Qy);
#endif
#ifdef PROJECTIVE
if (type==MR_ADD)
{
ZZn x2,y2,x3,z3;
extract(B,x2,y2);
extract(C,x3,x3,z3);
w=shuffle(slope*(Qx-x2)+z3*y2,-z3*Qy);
}
if (type==MR_DOUBLE)
{
ZZn x,y,x3,z3;
extract(A,x,y);
extract(C,x3,x3,z3);
w=shuffle((slope*ex2)*Qx-slope*x+ex1,-(z3*ex2)*Qy);
}
#endif
return w;
}
//
// Add A=A+B (or A=A+A)
// Return line function value
//
ZZn6 g(ECn& A,ECn& B,ZZn3& Qx,ZZn3& Qy)
{
ZZn lam,extra1,extra2;
int type;
big ptr,ex1,ex2;
ECn P=A;
// Evaluate line from A
type=A.add(B,&ptr,&ex1,&ex2);
if (!type) return (ZZn6)1;
lam=ptr;
extra1=ex1;
extra2=ex2;
return line(P,A,B,type,lam,extra1,extra2,Qx,Qy);
}
//
// Tate Pairing - note denominator elimination has been applied
//
// P is a point of order q. Q(x,y) is a point of order m.q.
// Note that P is a point on the curve over Fp, Q(x,y) a point on the
// twisted curve over the extension field Fp^3
//
#define WINDOW_SIZE 4
#define PRECOMP (1<<(WINDOW_SIZE-1))
BOOL fast_tate_pairing(ECn& P,ZZn3& Qx,ZZn3& Qy,Big &x,ZZn2& X,ZZn6& res)
{
int i,j,n,nb,nbw,nzs;
ECn A,P2,t[PRECOMP];
ZZn6 w,hc,z2n,zn[PRECOMP];
Big q=x*x-x+1;
res=zn[0]=1;
t[0]=P2=A=P;
z2n=g(P2,P2,Qx,Qy); // P2=P+P
normalise(P2);
//
// Build windowing table
//
for (i=1;i<PRECOMP;i++)
{
hc=g(A,P2,Qx,Qy);
t[i]=A;
zn[i]=z2n*zn[i-1]*hc;
}
multi_norm(PRECOMP,t); // make t points Affine
/*
A=P; // reset A
nb=bits(q);
for (i=nb-2;i>=0;i--)
{
res*=res;
res*=g(A,A,Qx,Qy);
if (bit(q,i)==1)
res*=g(A,P,Qx,Qy);
if (res.iszero()) return FALSE;
}
*/
A=P; // reset A
nb=bits(q);
for (i=nb-2;i>=0;i-=(nbw+nzs))
{ // windowing helps a little..
n=window(q,i,&nbw,&nzs,WINDOW_SIZE); // standard MIRACL windowing
for (j=0;j<nbw;j++)
{
res*=res;
res*=g(A,A,Qx,Qy);
}
if (n>0)
{
res*=zn[n/2];
res*=g(A,t[n/2],Qx,Qy);
}
for (j=0;j<nzs;j++)
{
res*=res;
res*=g(A,A,Qx,Qy);
}
if (res.iszero()) return FALSE;
}
#ifdef MR_COUNT_OPS
printf("After Miller fpc= %d fpa= %d fpx= %d\n",fpc,fpa,fpx);
#endif
// if (!A.iszero() || res.iszero()) return FALSE;
w=res;
w.powq(X);
res*=w; // ^(p+1)
w=res;
w.powq(X); w.powq(X); w.powq(X);
res=w/res; // ^(p^3-1)
// exploit the clever "trick" for a half-length exponentiation!
res.mark_as_unitary();
w=res;
res.powq(X); // res*=res; // res=pow(res,CF);
if (x<0) res/=powu(w,-x);
else res*=powu(w,x);
if (res==(ZZn6)1) return FALSE;
return TRUE;
}
//
// ecap(.) function
//
BOOL ecap(ECn& P,ECn3& Q,Big& x,ZZn2 &X,ZZn6& res)
{
BOOL Ok;
ECn PP=P;
ZZn3 Qx,Qy;
int qnr=get_mip()->cnr;
normalise(PP);
Q.get(Qx,Qy);
// untwist
Qx=Qx/qnr;
Qy=tx(Qy);
Qy=Qy/(qnr*qnr);
#ifdef MR_COUNT_OPS
fpc=fpa=fpx=0;
#endif
Ok=fast_tate_pairing(PP,Qx,Qy,x,X,res);
#ifdef MR_COUNT_OPS
printf("After pairing fpc= %d fpa= %d fpx= %d\n",fpc,fpa,fpx);
fpa=fpc=fpx=0;
#endif
if (Ok) return TRUE;
return FALSE;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha sh;
shs_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs_process(&sh,string[i]);
}
shs_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H2(ZZn6 y)
{ // Hash and compress an Fp6 to a big number
sha sh;
ZZn u,v,w;
ZZn2 x;
Big a,h,p,xx[2];
char s[HASH_LEN];
int i,j,m;
shs_init(&sh);
y.get(x);
x.get(u,v);
xx[0]=u; xx[1]=v;
for (i=0;i<2;i++)
{
a=xx[i];
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
}
shs_hash(&sh,s);
h=from_binary(HASH_LEN,s);
return h;
}
// Hash and map a Server Identity to a curve point E_(Fp3)
ECn3 hash_and_map3(char *ID)
{
int i;
ECn3 S;
ZZn3 X;
Big x0=H1(ID);
forever
{
x0+=1;
X.set2((ZZn)x0);
if (!S.set(X)) continue;
break;
}
// cout << "S= " << S << endl;
return S;
}
// Hash and map a Client Identity to a curve point E_(Fp) of order q
ECn hash_and_map(char *ID)
{
ECn Q;
Big x0=H1(ID);
while (!Q.set(x0,x0)) x0+=1;
return Q;
}
BOOL member(ZZn6 r,Big &x,ZZn2 &X)
{ // check its an element of order q
ZZn6 w=r;
w.powq(X);
if (x<0) r=powu(inverse(r),-x);
else r=powu(r,x);
if (r==w) return TRUE;
return FALSE;
}
void q_power_frobenius(ECn3 &S,ZZn2& X)
{
ZZn6 X1,X2,Y1,Y2;
ZZn3 Sx,Sy,T;
int qnr=get_mip()->cnr;
S.get(Sx,Sy);
// untwist
Sx=Sx/qnr;
Sy=tx(Sy);
Sy=Sy/(qnr*qnr);
X1=shuffle(Sx,(ZZn3)0); Y1=shuffle((ZZn3)0,Sy);
X1.powq(X); Y1.powq(X);
unshuffle(X1,Sx,T); unshuffle(Y1,T,Sy);
// twist
Sx=qnr*Sx;
Sy=txd(Sy*qnr*qnr);
S.set(Sx,Sy);
}
// Use Scott et al. idea - http://eprint.iacr.org/2008/530.pdf
void cofactor(ECn3 &S,Big &x, ZZn2& X)
{ // S=Phi(2xP)+phi^2(2xP)
ZZn6 X1,X2,Y1,Y2;
ZZn3 Sx,Sy,T;
ECn3 S2;
int qnr=get_mip()->cnr;
S*=x; S+=S; // hard work done here
S.get(Sx,Sy);
// untwist
Sx=Sx/qnr;
Sy=tx(Sy);
Sy=Sy/(qnr*qnr);
X1=shuffle(Sx,(ZZn3)0); Y1=shuffle((ZZn3)0,Sy);
X1.powq(X); Y1.powq(X);
X2=X1; Y2=Y1;
X2.powq(X); Y2.powq(X);
unshuffle(X1,Sx,T); unshuffle(Y1,T,Sy);
// twist
Sx=qnr*Sx;
Sy=txd(Sy*qnr*qnr);
S.set(Sx,Sy);
unshuffle(X2,Sx,T); unshuffle(Y2,T,Sy);
//twist (again, like we did last summer...)
Sx=qnr*Sx;
Sy=txd(Sy*qnr*qnr);
S2.set(Sx,Sy);
S+=S2;
}
// GLV + Galbraith-Scott
ZZn6 GT_pow(ZZn6& u,Big& k,Big& x,ZZn2& X)
{
ZZn6 v=u;
v.powq(X);
v=powu(v,k/x,u,k%x);
return v;
}
ECn3 G2_mul(ECn3& P,Big& k,Big& x,ZZn2& X)
{
ECn3 V=P;
q_power_frobenius(V,X);
V=mul(V,k/x,P,k%x);
return V;
}
int main()
{
miracl* mip=&precision;
ECn Alice,Bob,sA,sB;
ECn3 B6,Server,sS;
ZZn6 sp,ap,bp;
ZZn6 res;
ZZn2 X;
Big a,b,s,ss,p,q,x,y,B,cf,t,sru,T;
int i,A;
time_t seed;
mip->IOBASE=16;
x="-D285DA0CFEF02F06F812"; // MNT elliptic curve parameters (Thanks to Drew Sutherland)
p=x*x+1;
q=x*x-x+1;
t=x+1;
cf=x*x+x+1;
T=t-1;
// cout << "t-1= " << T << endl;
// cout << "p%24= " << p%24 << endl;
time(&seed);
irand((long)seed);
A=-3;
B="77479D33943B5B1F590B54258B72F316B3261D45";
#ifdef AFFINE
ecurve(A,B,p,MR_AFFINE);
#endif
#ifdef PROJECTIVE
ecurve(A,B,p,MR_PROJECTIVE);
#endif
set_frobenius_constant(X);
sru=pow((ZZn)-2,(p-1)/6); // x^6+2 is irreducible
set_zzn3(-2,sru);
mip->IOBASE=16;
mip->TWIST=MR_QUADRATIC; // map Server to point on twisted curve E(Fp3)
ss=rand(q); // TA's super-secret
cout << "Mapping Server ID to point" << endl;
Server=hash_and_map3((char *)"Server");
cofactor(Server,x,X);
cout << "Mapping Alice & Bob ID's to points" << endl;
Alice=hash_and_map((char *)"Alice");
Bob= hash_and_map((char *)"Robert");
cout << "Alice, Bob and the Server visit Trusted Authority" << endl;
sS=G2_mul(Server,ss,x,X);
sA=ss*Alice;
sB=ss*Bob;
cout << "Alice and Server Key Exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
if (!ecap(sA,Server,x,X,res)) cout << "Trouble" << endl;
if (!member(res,x,X))
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
ap=GT_pow(res,a,x,X);//powu(res,a);
if (!ecap(Alice,sS,x,X,res)) cout << "Trouble" << endl;
if (!member(res,x,X))
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=GT_pow(res,s,x,X);
cout << "Alice Key= " << H2(powu(sp,a)) << endl;
cout << "Server Key= " << H2(powu(ap,s)) << endl;
cout << "Bob and Server Key Exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
if (!ecap(sB,Server,x,X,res)) cout << "Trouble" << endl;
if (!member(res,x,X))
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
bp=GT_pow(res,b,x,X);
if (!ecap(Bob,sS,x,X,res)) cout << "Trouble" << endl;
if (!member(res,x,X))
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=GT_pow(res,s,x,X);
cout << "Bob's Key= " << H2(powu(sp,b)) << endl;
cout << "Server Key= " << H2(powu(bp,s)) << endl;
return 0;
}