KGC_TEST/KGCAPP/3rdparty/miracl/source/curve/pairing/bls_ver.cpp

335 lines
6.3 KiB
C++

/*
Boneh-Lynn-Shacham short signature scheme - verification phase
cl /O2 /GX bls_ver.cpp ecn3.cpp ecn.cpp zzn6.cpp zzn3.cpp zzn.cpp big.cpp miracl.lib
The required file mnt.ecs is created from a curve generated by the mnt
utility, and created by the cm utility. For convenience the value of
(p^2-p+1)/q and the 6th root of unity (cnr^(p-1)/6) have been manually
calculated and appended to this file (replacing the x,y values in the
original .ecs file)
*/
#include <iostream>
#include <fstream>
#include <string.h>
#include "ecn.h"
#include <ctime>
#include "ecn3.h"
#include "zzn6.h"
// cofactor - number of points on curve=CF.q
#define CF 2
#define CNR 2
using namespace std;
Miracl precision(40,16);
// Using SHA-1 as basic hash algorithm
#define HASH_LEN 20
//
// Tate Pairing Code
//
// Extract ECn point in internal ZZn format
//
void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z)
{
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn6 line(ECn& A,ECn& C,ZZn& slope,ZZn3& Qx,ZZn3& Qy)
{
ZZn6 w;
ZZn3 nn=Qx;
ZZn x,y,z,t;
extract(A,x,y,z);
x*=z; t=z; z*=z; z*=t;
x*=slope; t=slope*z;
nn*=t; nn-=x; t=z;
extract(C,x,x,z);
nn+=(z*y); t*=z;
w.set(nn,-Qy*t);
return w;
}
ZZn6 g(ECn& A,ECn& B,ECn& C,ECn& D,ZZn3& Qx,ZZn3& Qy,ZZn3& Sx,ZZn3& Sy)
{
ZZn6 u;
int type;
ZZn lam;
big ptr;
ECn P;
P=A;
type=A.add(B,&ptr);
if (!type) return (ZZn6)1;
lam=ptr;
u=line(P,A,lam,Qx,Qy);
P=C;
type=C.add(D,&ptr);
if (!type) return (ZZn6)1;
lam=ptr;
return u*line(P,C,lam,Sx,Sy);
}
//
// Fast double-Tate-Pairing, with shared Miller variable and one final exponentiation
//
BOOL fast_double_tate_pairing(ECn& P,ZZn3& Qx,ZZn3& Qy,ECn& R,ZZn3& Sx,ZZn3& Sy,Big& q,Big &cf)
{
int i,j,n,nb,nbw,nzs;
ECn A1,A2,P2,R2,t1[16],*t2;
ZZn6 w,hc,zn[8],res;
Big m;
t2=&t1[8];
res=zn[0]=1;
t1[0]=P2=A1=P;
t2[0]=R2=A2=R;
w=g(P2,P2,R2,R2,Qx,Qy,Sx,Sy);
normalise(P2);
normalise(R2);
//
// Build windowing table
//
for (i=1;i<8;i++)
{
hc=g(A1,P2,A2,R2,Qx,Qy,Sx,Sy);
t1[i]=A1;
t2[i]=A2;
zn[i]=w*zn[i-1]*hc;
}
multi_norm(16,t1);
A1=P;
A2=R;
/* Left to right method */
m=q-1; // skip last iteration
nb=bits(m);
for (i=nb-2;i>=0;i-=(nbw+nzs))
{
n=window(m,i,&nbw,&nzs,4); // standard MIRACL windowing
for (j=0;j<nbw;j++)
{
res*=res;
res*=g(A1,A1,A2,A2,Qx,Qy,Sx,Sy);
}
if (n>0)
{
res*=zn[n/2];
res*=g(A1,t1[n/2],A2,t2[n/2],Qx,Qy,Sx,Sy);
}
for (j=0;j<nzs;j++)
{
res*=res;
res*=g(A1,A1,A2,A2,Qx,Qy,Sx,Sy);
}
}
if (A1!=-P || A2!=-R || res.iszero()) return FALSE;
w=res;
w.powq();
res*=w; // ^(p+1)
w=res;
w.powq(); w.powq(); w.powq();
res=w/res; // ^(p^3-1)
res.mark_as_unitary();
w=res.powq();
res.powq();
if (CF==2) res*=res;
else res=pow(res,CF);
if (cf<0) res/=powu(w,-cf);
else res*=powu(w,cf);
if (res==(ZZn6)one()) return TRUE;
return FALSE;
}
BOOL ecap2(ECn& P,ECn3 Q,ECn& R,ECn3 &S,Big& order,Big& cf)
{
ECn PP=P;
ECn RR=R;
ZZn3 Qx,Qy,Sx,Sy;
int qnr=get_mip()->cnr;
normalise(PP);
Q.get(Qx,Qy);
// untwist
Qx=Qx/qnr;
Qy=tx(Qy);
Qy=Qy/(qnr*qnr);
RR=R;
normalise(RR);
S.get(Sx,Sy);
// untwist
Sx=Sx/qnr;
Sy=tx(Sy);
Sy=Sy/(qnr*qnr);
return fast_double_tate_pairing(PP,Qx,Qy,RR,Sx,Sy,order,cf);
}
//
// Hash functions
//
Big H1(char *string,int len)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha sh;
shs_init(&sh);
for (i=0;i<len;i++)
shs_process(&sh,string[i]);
shs_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=(unsigned int)s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
// Hash and map a Client Identity to a curve point E_(Fp) of order q
ECn hash_and_map(char *ID,int len)
{
ECn Q;
Big x0=H1(ID,len);
while (!Q.set(x0,x0)) x0+=1;
Q*=CF;
return Q;
}
int main()
{
ifstream common("mnt.ecs"); // MNT elliptic curve parameters
ifstream signature("bls_signature.sig");
ifstream public_key("bls_public.key");
miracl* mip=&precision;
ECn S,HM;
ECn3 P,R;
ZZn3 u,v,x3,y3;
Big a,b,c;
Big p,q,x,B,cf,cfp,sru;
int bbits,A,lsb;
common >> bbits;
mip->IOBASE=16;
common >> p;
common >> A;
common >> B >> q >> cf >> sru;
ecurve(A,B,p,MR_PROJECTIVE);
set_zzn3(CNR,sru);
cfp=cf-CF*p; // ~ (t-1)
mip->TWIST=MR_QUADRATIC; // map to point on twisted curve E(Fp3)
// don't use compression here because it will be slower...
public_key >> a;
public_key >> b;
public_key >> c;
x3.set(a,b,c);
public_key >> a;
public_key >> b;
public_key >> c;
y3.set(a,b,c);
P.set(x3,y3);
public_key >> a;
public_key >> b;
public_key >> c;
x3.set(a,b,c);
public_key >> a;
public_key >> b;
public_key >> c;
y3.set(a,b,c);
R.set(x3,y3);
signature >> x;
signature >> lsb;
//cout << "bits(x)= " << bits(x) << endl;
//cout << "x= " << x << endl;
//cout << "lsb= " << lsb << endl;
if (!S.set(x,1-lsb))
{
cout << "Signature is invalid" << endl;
exit(0);
}
HM=hash_and_map((char *)"This a quick test of the method",32);
//cout << "HM= " << HM << endl;
//cout << "S= " << S << endl;
//cout << "P= " << P << endl;
//cout << "R= " << R << endl;
//cout << "cfp= " << cfp << endl;
//cout << "q= " << q << endl;
if (ecap2(S,P,HM,R,q,cfp)) cout << "Signature is TRUE" << endl;
else cout << "Signature is FALSE" << endl;
return 0;
}