163 lines
3.7 KiB
C
163 lines
3.7 KiB
C
/*
|
|
* Elliptic Curve Digital Signature Algorithm (ECDSA)
|
|
*
|
|
*
|
|
* This program asks for the name of a <file>, computes its message digest,
|
|
* signs it, and outputs the signature to a file <file>.ecs. It is assumed
|
|
* that curve parameters are available from a file common.ecs, as well as
|
|
* the private key of the signer previously generated by the ecsgen program
|
|
*
|
|
* The curve is y^2=x^3+Ax+B mod p
|
|
*
|
|
* The file common.ecs is presumed to exist, and to contain the domain
|
|
* information {p,A,B,q,x,y}, where A and B are curve parameters, (x,y) are
|
|
* a point of order q, p is the prime modulus, and q is the order of the
|
|
* point (x,y). In fact normally q is the prime number of points counted
|
|
* on the curve.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "miracl.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifdef MR_COUNT_OPS
|
|
int fpm2,fpi2,fpc,fpa,fpx;
|
|
#endif
|
|
|
|
void strip(char *name)
|
|
{ /* strip off filename extension */
|
|
int i;
|
|
for (i=0;name[i]!='\0';i++)
|
|
{
|
|
if (name[i]!='.') continue;
|
|
name[i]='\0';
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void hashing(FILE *fp,big hash)
|
|
{ /* compute hash function */
|
|
char h[20];
|
|
int ch;
|
|
sha sh;
|
|
shs_init(&sh);
|
|
while ((ch=fgetc(fp))!=EOF) shs_process(&sh,ch);
|
|
shs_hash(&sh,h);
|
|
bytes_to_big(20,h,hash);
|
|
}
|
|
|
|
int main()
|
|
{
|
|
FILE *fp;
|
|
char ifname[50],ofname[50];
|
|
big a,b,p,q,x,y,d,r,s,k,hash;
|
|
epoint *g;
|
|
long seed;
|
|
int bits;
|
|
miracl *mip;
|
|
/* get public data */
|
|
#ifndef MR_EDWARDS
|
|
fp=fopen("common.ecs","rt");
|
|
if (fp==NULL)
|
|
{
|
|
printf("file common.ecs does not exist\n");
|
|
return 0;
|
|
}
|
|
fscanf(fp,"%d\n",&bits);
|
|
#else
|
|
fp=fopen("edwards.ecs","rt");
|
|
if (fp==NULL)
|
|
{
|
|
printf("file edwards.ecs does not exist\n");
|
|
return 0;
|
|
}
|
|
fscanf(fp,"%d\n",&bits);
|
|
#endif
|
|
mip=mirsys(bits/4,16); /* Use Hex internally */
|
|
a=mirvar(0);
|
|
b=mirvar(0);
|
|
p=mirvar(0);
|
|
q=mirvar(0);
|
|
x=mirvar(0);
|
|
y=mirvar(0);
|
|
d=mirvar(0);
|
|
r=mirvar(0);
|
|
s=mirvar(0);
|
|
k=mirvar(0);
|
|
hash=mirvar(0);
|
|
|
|
innum(p,fp); /* modulus */
|
|
innum(a,fp); /* curve parameters */
|
|
innum(b,fp);
|
|
innum(q,fp); /* order of (x,y) */
|
|
innum(x,fp); /* (x,y) point on curve of order q */
|
|
innum(y,fp);
|
|
fclose(fp);
|
|
|
|
/* randomise */
|
|
printf("Enter 9 digit random number seed = ");
|
|
scanf("%ld",&seed);
|
|
getchar();
|
|
irand(seed);
|
|
|
|
ecurve_init(a,b,p,MR_PROJECTIVE); /* initialise curve */
|
|
g=epoint_init();
|
|
|
|
if (!epoint_set(x,y,0,g)) /* initialise point of order q */
|
|
{
|
|
printf("1. Problem - point (x,y) is not on the curve\n");
|
|
exit(0);
|
|
}
|
|
|
|
/* calculate r - this can be done offline,
|
|
and hence amortized to almost nothing */
|
|
bigrand(q,k);
|
|
#ifdef MR_COUNT_OPS
|
|
fpm2=fpi2=fpc=fpa=fpx=0;
|
|
#endif
|
|
ecurve_mult(k,g,g); /* see ebrick.c for method to speed this up */
|
|
#ifdef MR_COUNT_OPS
|
|
printf("Number of modmuls= %d, inverses= %d\n",fpc,fpx);
|
|
#endif
|
|
epoint_get(g,r,r);
|
|
divide(r,q,q);
|
|
|
|
/* get private key of signer */
|
|
fp=fopen("private.ecs","rt");
|
|
if (fp==NULL)
|
|
{
|
|
printf("file private.ecs does not exist\n");
|
|
return 0;
|
|
}
|
|
innum(d,fp);
|
|
fclose(fp);
|
|
|
|
/* calculate message digest */
|
|
printf("file to be signed = ");
|
|
gets(ifname);
|
|
strcpy(ofname,ifname);
|
|
strip(ofname);
|
|
strcat(ofname,".ecs");
|
|
if ((fp=fopen(ifname,"rb"))==NULL)
|
|
{
|
|
printf("Unable to open file %s\n",ifname);
|
|
return 0;
|
|
}
|
|
hashing(fp,hash);
|
|
fclose(fp);
|
|
|
|
/* calculate s */
|
|
xgcd(k,q,k,k,k);
|
|
|
|
mad(d,r,hash,q,q,s);
|
|
mad(s,k,k,q,q,s);
|
|
fp=fopen(ofname,"wt");
|
|
otnum(r,fp);
|
|
otnum(s,fp);
|
|
fclose(fp);
|
|
return 0;
|
|
}
|
|
|