KGC_TEST/KGCAPP/3rdparty/miracl/source/mrbrick.c

220 lines
6.5 KiB
C

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
* Module to implement Comb method for fast
* computation of g^x mod n, for fixed g and n, using precomputation.
* This idea can be used to substantially speed up certain phases
* of the Digital Signature Standard (DSS) for example.
*
* See "Handbook of Applied Cryptography", CRC Press, 2001
*/
#include <stdlib.h>
#include "miracl.h"
#ifndef MR_STATIC
BOOL brick_init(_MIPD_ brick *b,big g,big n,int window,int nb)
{ /* Uses Montgomery arithmetic internally *
* g is the fixed base for exponentiation *
* n is the fixed modulus *
* nb is the maximum number of bits in the exponent */
int i,j,k,t,bp,len,bptr,is;
big *table;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (nb<2 || window<1 || window>nb || mr_mip->ERNUM) return FALSE;
t=MR_ROUNDUP(nb,window);
if (t<2) return FALSE;
MR_IN(109)
#ifndef MR_ALWAYS_BINARY
if (mr_mip->base != mr_mip->base2)
{
mr_berror(_MIPP_ MR_ERR_NOT_SUPPORTED);
MR_OUT
return FALSE;
}
#endif
b->window=window;
b->max=nb;
table=(big *)mr_alloc(_MIPP_ (1<<window),sizeof(big));
if (table==NULL)
{
mr_berror(_MIPP_ MR_ERR_OUT_OF_MEMORY);
MR_OUT
return FALSE;
}
b->n=mirvar(_MIPP_ 0);
copy(n,b->n);
prepare_monty(_MIPP_ n);
nres(_MIPP_ g,mr_mip->w1);
convert(_MIPP_ 1,mr_mip->w2);
nres(_MIPP_ mr_mip->w2,mr_mip->w2);
table[0]=mirvar(_MIPP_ 0);
copy(mr_mip->w2,table[0]);
table[1]=mirvar(_MIPP_ 0);
copy(mr_mip->w1,table[1]);
for (j=0;j<t;j++)
nres_modmult(_MIPP_ mr_mip->w1,mr_mip->w1,mr_mip->w1);
k=1;
for (i=2;i<(1<<window);i++)
{
table[i]=mirvar(_MIPP_ 0);
if (i==(1<<k))
{
k++;
copy(mr_mip->w1,table[i]);
for (j=0;j<t;j++)
nres_modmult(_MIPP_ mr_mip->w1,mr_mip->w1,mr_mip->w1);
continue;
}
bp=1;
copy(mr_mip->w2,table[i]);
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
nres_modmult(_MIPP_ table[is],table[i],table[i]);
}
bp<<=1;
}
}
/* create the table */
len=n->len;
bptr=0;
b->table=(mr_small *)mr_alloc(_MIPP_ len*(1<<window),sizeof(mr_small));
for (i=0;i<(1<<window);i++)
{
for (j=0;j<len;j++)
{
b->table[bptr++]=table[i]->w[j];
}
mirkill(table[i]);
}
mr_free(table);
MR_OUT
return TRUE;
}
void brick_end(brick *b)
{
mirkill(b->n);
mr_free(b->table);
}
#else
/* use precomputated table in ROM - see ebrick2.c for example of how to create such a table, and ecdh.c
for an example of use */
void brick_init(brick *b,const mr_small *table,big n,int window,int nb)
{
b->table=table;
b->n=n;
b->window=window;
b->max=nb;
}
#endif
void pow_brick(_MIPD_ brick *b,big e,big w)
{
int i,j,t,len,promptr,maxsize;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (size(e)<0) mr_berror(_MIPP_ MR_ERR_NEG_POWER);
t=MR_ROUNDUP(b->max,b->window);
MR_IN(110)
#ifndef MR_ALWAYS_BINARY
if (mr_mip->base != mr_mip->base2)
{
mr_berror(_MIPP_ MR_ERR_NOT_SUPPORTED);
MR_OUT
return;
}
#endif
if (logb2(_MIPP_ e) > b->max)
{
mr_berror(_MIPP_ MR_ERR_EXP_TOO_BIG);
MR_OUT
return;
}
prepare_monty(_MIPP_ b->n);
j=recode(_MIPP_ e,t,b->window,t-1);
len=b->n->len;
maxsize=(1<<b->window)*len;
promptr=j*len;
init_big_from_rom(mr_mip->w1,len,b->table,maxsize,&promptr);
for (i=t-2;i>=0;i--)
{
j=recode(_MIPP_ e,t,b->window,i);
nres_modmult(_MIPP_ mr_mip->w1,mr_mip->w1,mr_mip->w1);
if (j>0)
{
promptr=j*len;
init_big_from_rom(mr_mip->w2,len,b->table,maxsize,&promptr);
nres_modmult(_MIPP_ mr_mip->w1,mr_mip->w2,mr_mip->w1);
}
}
redc(_MIPP_ mr_mip->w1,w);
MR_OUT
}