1549 lines
34 KiB
Smarty
1549 lines
34 KiB
Smarty
/*
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
*/
|
|
/*
|
|
* MIRACL Comba's method for ultimate speed modular multiplication
|
|
* mrcomba.tpl
|
|
*
|
|
* See "Exponentiation Cryptosystems on the IBM PC", IBM Systems
|
|
* Journal Vol. 29 No. 4 1990. Comba's method has been extended to
|
|
* implement Montgomery reduction.
|
|
*
|
|
* Here the inner loops of the basic multiplication, squaring and
|
|
* Montgomery's redc() functions are completely unravelled, and
|
|
* reorganised for maximum possible speed.
|
|
*
|
|
* This approach is recommended for maximum speed where parameters
|
|
* are fixed and compute resources are constrained. The processor must
|
|
* support an unsigned multiply instruction, and should have a carry flag.
|
|
*
|
|
* This file is a template. To fill in the gaps and create mrcomba.c,
|
|
* you must run the mex.c program to insert the C or assembly language
|
|
* macros from the appropriate .mcs file. For use with C MR_NOASM must
|
|
* be defined in mirdef.h
|
|
*
|
|
* This method would appear to be particularly useful for implementing
|
|
* fast Elliptic Curve Cryptosystems over GF(p) and fast 1024-bit RSA
|
|
* decryption.
|
|
*
|
|
* The #define MR_COMBA in mirdef.h determines the FIXED size of
|
|
* modulus to be used. This *must* be determined at compile time.
|
|
*
|
|
* Note that this module can generate a *lot* of code for large values
|
|
* of MR_COMBA. This should have a maximum value of 8-16. Any larger
|
|
* that and you should define MR_KCM instead - see mrkcm.tpl
|
|
*
|
|
* Note that on some processors it is *VITAL* that arrays be aligned on
|
|
* 4-byte boundaries
|
|
*
|
|
* **** This code does not like -fomit-frame-pointer using GCC ***********
|
|
*
|
|
*/
|
|
|
|
#include "miracl.h"
|
|
|
|
#ifdef MR_COMBA
|
|
#if INLINE_ASM == 1
|
|
#define N 2
|
|
#define POINTER WORD PTR
|
|
#define PBP bp
|
|
#define PBX bx
|
|
#define PSI si
|
|
#define PDI di
|
|
#define DSI si
|
|
#define DDI di
|
|
#define DBP bp
|
|
#define DAX ax
|
|
#define DCX cx
|
|
#define DDX dx
|
|
#endif
|
|
|
|
#if INLINE_ASM == 2
|
|
#define N 4
|
|
#define POINTER DWORD PTR
|
|
#define PBP bp
|
|
#define PBX bx
|
|
#define PSI si
|
|
#define PDI di
|
|
#define DSI esi
|
|
#define DDI edi
|
|
#define DBP ebp
|
|
#define DAX eax
|
|
#define DCX ecx
|
|
#define DDX edx
|
|
#endif
|
|
|
|
#if INLINE_ASM == 3
|
|
#define N 4
|
|
#define POINTER DWORD PTR
|
|
#define PBP ebp
|
|
#define PBX ebx
|
|
#define PSI esi
|
|
#define PDI edi
|
|
#define DSI esi
|
|
#define DDI edi
|
|
#define DBP ebp
|
|
#define DAX eax
|
|
#define DCX ecx
|
|
#define DDX edx
|
|
#endif
|
|
|
|
/* NOTE! z must be distinct from x and y */
|
|
|
|
void comba_mult(big x,big y,big z)
|
|
{ /* comba multiplier */
|
|
int i;
|
|
mr_small *a,*b,*c;
|
|
|
|
#ifdef MR_WIN64
|
|
mr_small lo,hi,sumlo,sumhi,extra;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
register mr_small lo1,hi1,lo2,hi2,sumlo,sumhi,extra,ma,mb;
|
|
#else
|
|
#ifdef MR_NOASM
|
|
#ifdef mr_qltype
|
|
mr_large pp1;
|
|
mr_vlarge sum;
|
|
#else
|
|
register mr_small extra,s0,s1;
|
|
mr_large pp1,pp2,sum;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
for (i=2*MR_COMBA;i<(int)(z->len&MR_OBITS);i++) z->w[i]=0;
|
|
|
|
z->len=2*MR_COMBA;
|
|
a=x->w; b=y->w; c=z->w;
|
|
/*** MULTIPLY ***/ /* multiply a by b, result in c */
|
|
if (z->w[2*MR_COMBA-1]==0) mr_lzero(z);
|
|
}
|
|
|
|
/* NOTE! z and x must be distinct */
|
|
|
|
void comba_square(big x,big z)
|
|
{ /* super comba squarer */
|
|
int i;
|
|
mr_small *a,*c;
|
|
|
|
#ifdef MR_WIN64
|
|
mr_small lo,hi,sumlo,sumhi,extra,cy;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
register mr_small lo1,hi1,lo2,hi2,sumlo,sumhi,extra,ma,mb;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
#ifdef mr_qltype
|
|
mr_large pp1;
|
|
mr_vlarge sum;
|
|
#else
|
|
register mr_small extra,s0,s1;
|
|
mr_large pp1,pp2,sum;
|
|
#endif
|
|
#endif
|
|
|
|
for (i=2*MR_COMBA;i<(int)(z->len&MR_OBITS);i++) z->w[i]=0;
|
|
|
|
z->len=2*MR_COMBA;
|
|
a=x->w; c=z->w;
|
|
/*** SQUARE ***/ /* squares a, result in b */
|
|
if (z->w[2*MR_COMBA-1]==0) mr_lzero(z);
|
|
}
|
|
|
|
/* NOTE! t and z must be distinct! */
|
|
|
|
void comba_redc(_MIPD_ big t,big z)
|
|
{ /* super comba Montgomery redc() function */
|
|
mr_small carry,su;
|
|
#ifdef MR_ITANIUM
|
|
register mr_small lo1,hi1,lo2,hi2,sumlo,sumhi,extra,ma,mb,sp,u;
|
|
#endif
|
|
#ifdef MR_WIN64
|
|
mr_small lo,hi,sumlo,sumhi,extra,ma,mb,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#ifndef MR_SPECIAL
|
|
#ifdef mr_qltype
|
|
register mr_small sp;
|
|
mr_large pp1;
|
|
mr_vlarge sum;
|
|
#else
|
|
register mr_small sp,extra,s0,s1;
|
|
mr_large pp1,pp2,sum;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
unsigned int i;
|
|
big w,modulus;
|
|
mr_small *a,*b;
|
|
#ifndef MR_SPECIAL
|
|
BOOL need_subtract;
|
|
mr_small ndash;
|
|
#endif
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
|
|
#ifdef MR_SPECIAL
|
|
|
|
|
|
/* !!! Implement here a "special" fast method for modular reduction,
|
|
for a particular modulus. Implemented here for 2^192-2^64-1
|
|
and 2^224-2^96+1 on a 32 bit processor.
|
|
See for example "Software Implementation of the NIST Elliptic
|
|
Curves Over Prime Fields", Brown et al., Report #36, 2000 available
|
|
from www.cacr.math.uwaterloo.ca
|
|
|
|
The generated code can be manually optimised further.....
|
|
*/
|
|
int overshoot;
|
|
mr_small k[MR_COMBA],sn,tt,v;
|
|
#ifdef MR_PSEUDO_MERSENNE_142
|
|
mr_small sh,sl;
|
|
#endif
|
|
mr_small *c;
|
|
|
|
modulus=mr_mip->modulus;
|
|
for (i=MR_COMBA;i<(int)(z->len&MR_OBITS);i++) z->w[i]=0;
|
|
/* zero(z); */
|
|
z->len=MR_COMBA;
|
|
|
|
#ifdef MR_PSEUDO_MERSENNE_142
|
|
|
|
#if MIRACL==32
|
|
|
|
/* special code for 2^142-111 */
|
|
|
|
sn=111;
|
|
sh=t->w[4]>>14;
|
|
t->w[4]&=0x3FFF;
|
|
sl=t->w[5]>>14;
|
|
t->w[5]<<=18; t->w[5]|=sh;
|
|
sh=t->w[6]>>14;
|
|
t->w[6]<<=18; t->w[6]|=sl;
|
|
sl=t->w[7]>>14;
|
|
t->w[7]<<=18; t->w[7]|=sh;
|
|
sh=t->w[8]>>14;
|
|
t->w[8]<<=18; t->w[8]|=sl;
|
|
t->w[9]=sh;
|
|
|
|
a=&(t->w[5]);
|
|
b=k;
|
|
c=z->w;
|
|
|
|
/*** PMULT ***/
|
|
|
|
a=c;
|
|
k[0]=(c[4]>>14)*111;
|
|
c[4]&=0x3FFF;
|
|
|
|
/*** INCREMENT ***/
|
|
b=t->w;
|
|
|
|
/*** INCREMENT ***/
|
|
b=modulus->w;
|
|
|
|
while (z->w[4]>>14)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
|
|
#if MIRACL==64
|
|
|
|
sn=111;
|
|
sh=t->w[2]>>14;
|
|
t->w[2]&=0x3FFF;
|
|
sl=t->w[3]>>14;
|
|
t->w[3]<<=50; t->w[3]|=sh;
|
|
sh=t->w[4]>>14;
|
|
t->w[4]<<=50; t->w[4]|=sl;
|
|
t->w[5]=sh;
|
|
|
|
a=&(t->w[3]);
|
|
b=k;
|
|
c=z->w;
|
|
|
|
/*** PMULT ***/
|
|
|
|
a=c;
|
|
k[0]=(c[2]>>14)*111;
|
|
c[2]&=0x3FFF;
|
|
|
|
/*** INCREMENT ***/
|
|
b=t->w;
|
|
|
|
/*** INCREMENT ***/
|
|
b=modulus->w;
|
|
|
|
while (z->w[2]>>14)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef MR_PSEUDO_MERSENNE
|
|
|
|
sn=(mr_small)0-modulus->w[0]; /* Modulus is 2^{MIRACL*MR_COMBA}-c. Here we calculate c */
|
|
|
|
/* .. where c MUST be a word sized ... */
|
|
|
|
a=&(t->w[MR_COMBA]);
|
|
b=k;
|
|
c=z->w;
|
|
|
|
/*** PMULT ***/
|
|
|
|
a=c;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot=carry;
|
|
b=t->w;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
b=modulus->w;
|
|
while(overshoot>0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
}
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
|
|
#ifdef MR_GENERALIZED_MERSENNE
|
|
|
|
#if MIRACL==64
|
|
|
|
#if MR_COMBA == 3
|
|
/* Special Code for 2^192-2^64-1 - assuming 64-bit processor */
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
k[0]=k[1]=a[3]; k[2]=0;
|
|
|
|
/*** ADDITION ***/
|
|
overshoot=carry;
|
|
a=c; c=t->w;
|
|
k[0]=0;k[1]=k[2]=c[4];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
k[0]=k[1]=k[2]=c[5];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
b=modulus->w;
|
|
while(overshoot>0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
}
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
|
|
#if MR_COMBA == 2
|
|
/* Special code for 2^127-1 - for 64-bit processor */
|
|
|
|
a=t->w;
|
|
k[0]=a[2]; k[1]=a[3];
|
|
a=b=k;
|
|
|
|
/*** INCREMENT ***/
|
|
|
|
a=t->w;
|
|
k[0]+=(a[1]>>63); k[1]|=(a[1]&0x8000000000000000);
|
|
|
|
c=z->w;
|
|
|
|
/*** ADDITION ***/
|
|
|
|
a=z->w;
|
|
b=modulus->w;
|
|
|
|
if (z->w[1]>=modulus->w[1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
|
|
#if MR_COMBA == 9
|
|
|
|
/* Special Code for 2^521-1 - assuming 64-bit processor */
|
|
|
|
/* split t into 521-bit halves, low half in a, high half in b */
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
|
|
for (i=0;i<=8;i++)
|
|
b[i]=(a[i+8]>>9)|(a[i+9]<<55);
|
|
|
|
b[8]|=(-(a[8]>>9)<<9); /* clever stuff! Set top part of b[8] to minus *
|
|
* top part of a[8]. When added they cancel out */
|
|
|
|
/*** ADDITION ***/
|
|
/* ignore carry=1 */
|
|
a=z->w;
|
|
b=modulus->w;
|
|
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
#endif
|
|
|
|
|
|
#endif
|
|
|
|
|
|
#if MIRACL==8
|
|
|
|
#if MR_COMBA==32
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
k[0]=k[1]=k[2]=k[3]=k[4]=k[5]=k[6]=k[7]=k[8]=k[9]=k[10]=k[11]=0;
|
|
k[12]=a[44]; k[13]=a[45]; k[14]=a[46]; k[15]=a[47];
|
|
k[16]=a[48]; k[17]=a[49]; k[18]=a[50]; k[19]=a[51];
|
|
k[20]=a[52]; k[21]=a[53]; k[22]=a[54]; k[23]=a[55];
|
|
k[24]=a[56]; k[25]=a[57]; k[26]=a[58]; k[27]=a[59];
|
|
k[28]=a[60]; k[29]=a[61]; k[30]=a[62]; k[31]=a[63];
|
|
|
|
/*** ADDITION ***/
|
|
overshoot=carry;
|
|
a=c; c=t->w;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
|
|
k[0]=k[1]=k[2]=k[3]=k[4]=k[5]=k[6]=k[7]=k[8]=k[9]=k[10]=k[11]=0;
|
|
k[12]=c[48]; k[13]=c[49]; k[14]=c[50]; k[15]=c[51];
|
|
k[16]=c[52]; k[17]=c[53]; k[18]=c[54]; k[19]=c[55];
|
|
k[20]=c[56]; k[21]=c[57]; k[22]=c[58]; k[23]=c[59];
|
|
k[24]=c[60]; k[25]=c[61]; k[26]=c[62]; k[27]=c[63];
|
|
k[28]=k[29]=k[30]=k[31]=0;
|
|
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[32]; k[1]=c[33]; k[2]=c[34]; k[3]=c[35];
|
|
k[4]=c[36]; k[5]=c[37]; k[6]=c[38]; k[7]=c[39];
|
|
k[8]=c[40]; k[9]=c[41]; k[10]=c[42]; k[11]=c[43];
|
|
k[12]=k[13]=k[14]=k[15]=k[16]=k[17]=k[18]=k[19]=k[20]=k[21]=k[22]=k[23]=0;
|
|
k[24]=c[56]; k[25]=c[57]; k[26]=c[58]; k[27]=c[59];
|
|
k[28]=c[60]; k[29]=c[61]; k[30]=c[62]; k[31]=c[63];
|
|
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[36]; k[1]=c[37]; k[2]=c[38]; k[3]=c[39];
|
|
k[4]=c[40]; k[5]=c[41]; k[6]=c[42]; k[7]=c[43];
|
|
k[8]=c[44]; k[9]=c[45]; k[10]=c[46]; k[11]=c[47];
|
|
k[12]=c[52]; k[13]=c[53]; k[14]=c[54]; k[15]=c[55];
|
|
k[16]=c[56]; k[17]=c[57]; k[18]=c[58]; k[19]=c[59];
|
|
k[20]=c[60]; k[21]=c[61]; k[22]=c[62]; k[23]=c[63];
|
|
k[24]=c[52]; k[25]=c[53]; k[26]=c[54]; k[27]=c[55];
|
|
k[28]=c[32]; k[29]=c[33]; k[30]=c[34]; k[31]=c[35];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[44]; k[1]=c[45]; k[2]=c[46]; k[3]=c[47];
|
|
k[4]=c[48]; k[5]=c[49]; k[6]=c[50]; k[7]=c[51];
|
|
k[8]=c[52]; k[9]=c[53]; k[10]=c[54]; k[11]=c[55];
|
|
k[12]=k[13]=k[14]=k[15]=k[16]=k[17]=k[18]=k[19]=k[20]=k[21]=k[22]=k[23]=0;
|
|
k[24]=c[32]; k[25]=c[33]; k[26]=c[34]; k[27]=c[35];
|
|
k[28]=c[40]; k[29]=c[41]; k[30]=c[42]; k[31]=c[43];
|
|
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
k[0]=c[48]; k[1]=c[49]; k[2]=c[50]; k[3]=c[51];
|
|
k[4]=c[52]; k[5]=c[53]; k[6]=c[54]; k[7]=c[55];
|
|
k[8]=c[56]; k[9]=c[57]; k[10]=c[58]; k[11]=c[59];
|
|
k[12]=c[60]; k[13]=c[61]; k[14]=c[62]; k[15]=c[63];
|
|
k[16]=k[17]=k[18]=k[19]=k[20]=k[21]=k[22]=k[23]=0;
|
|
k[24]=c[36]; k[25]=c[37]; k[26]=c[38]; k[27]=c[39];
|
|
k[28]=c[44]; k[29]=c[45]; k[30]=c[46]; k[31]=c[47];
|
|
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
k[0]=c[52]; k[1]=c[53]; k[2]=c[54]; k[3]=c[55];
|
|
k[4]=c[56]; k[5]=c[57]; k[6]=c[58]; k[7]=c[59];
|
|
k[8]=c[60]; k[9]=c[61]; k[10]=c[62]; k[11]=c[63];
|
|
k[12]=c[32]; k[13]=c[33]; k[14]=c[34]; k[15]=c[35];
|
|
k[16]=c[36]; k[17]=c[37]; k[18]=c[38]; k[19]=c[39];
|
|
k[20]=c[40]; k[21]=c[41]; k[22]=c[42]; k[23]=c[43];
|
|
k[24]=k[25]=k[26]=k[27]=0;
|
|
k[28]=c[48]; k[29]=c[49]; k[30]=c[50]; k[31]=c[51];
|
|
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
k[0]=c[56]; k[1]=c[57]; k[2]=c[58]; k[3]=c[59];
|
|
k[4]=c[60]; k[5]=c[61]; k[6]=c[62]; k[7]=c[63];
|
|
k[8]=k[9]=k[10]=k[11]=0;
|
|
k[12]=c[36]; k[13]=c[37]; k[14]=c[38]; k[15]=c[39];
|
|
k[16]=c[40]; k[17]=c[41]; k[18]=c[42]; k[19]=c[43];
|
|
k[20]=c[44]; k[21]=c[45]; k[22]=c[46]; k[23]=c[47];
|
|
k[24]=k[25]=k[26]=k[27]=0;
|
|
k[28]=c[52]; k[29]=c[53]; k[30]=c[54]; k[31]=c[55];
|
|
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
b=modulus->w;
|
|
while (overshoot>0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
}
|
|
while (overshoot<0)
|
|
{
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
}
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
|
|
#if MR_COMBA == 16
|
|
|
|
/* Special code for 2^127-1 - for 8-bit processor */
|
|
|
|
a=t->w;
|
|
k[0]=a[16]; k[1]=a[17]; k[2]=a[18]; k[3]=a[19];
|
|
k[4]=a[20]; k[5]=a[21]; k[6]=a[22]; k[7]=a[23];
|
|
k[8]=a[24]; k[9]=a[25]; k[10]=a[26]; k[11]=a[27];
|
|
k[12]=a[28]; k[13]=a[29]; k[14]=a[30]; k[15]=a[31];
|
|
|
|
a=b=k;
|
|
|
|
/*** DOUBLEIT ***/
|
|
|
|
a=t->w;
|
|
k[0]+=(a[15]>>7); k[15]|=(a[15]&0x80);
|
|
|
|
c=z->w;
|
|
|
|
/*** ADDITION ***/
|
|
|
|
a=z->w;
|
|
b=modulus->w;
|
|
|
|
/* if MSB is 1, try and deal with it here */
|
|
|
|
tt=(mr_small)(z->w[15]>>M1);
|
|
v=z->w[0]+tt;
|
|
if (v>=z->w[0])
|
|
{
|
|
z->w[15]-=(mr_small)(tt<<M1);
|
|
z->w[0]=v;
|
|
}
|
|
|
|
/* This is probably not going to happen now... */
|
|
|
|
if (z->w[15]>=modulus->w[15])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
|
|
#if MR_COMBA==20
|
|
|
|
/* 2^160-2^112+2^64+1 */
|
|
|
|
/* faster way - keep a[20] to a[39] in registers r2-r21.
|
|
*/
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
|
|
k[0]=k[8]=a[38]; k[2]=k[4]=k[6]=k[10]=k[12]=0; k[14]=a[20]; k[16]=a[22]; k[18]=a[24];
|
|
k[1]=k[9]=a[39]; k[3]=k[5]=k[7]=k[11]=k[13]=0; k[15]=a[21]; k[17]=a[23]; k[19]=a[25];
|
|
|
|
/*** ADDITION ***/
|
|
overshoot=carry;
|
|
a=c; c=t->w;
|
|
k[0]=k[2]=k[4]=k[6]=0; k[8]=k[14]=k[16]=c[34]; k[10]=c[36]; k[12]=c[24]; k[18]=0;
|
|
k[1]=k[3]=k[5]=k[7]=0; k[9]=k[15]=k[17]=c[35]; k[11]=c[37]; k[13]=c[25]; k[19]=0;
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
k[4]=c[24]; k[6]=k[12]=k[14]=c[32]; k[0]=k[8]=c[20]; k[2]=k[10]=c[22]; k[16]=k[18]=c[36];
|
|
k[5]=c[25]; k[7]=k[13]=k[15]=c[33]; k[1]=k[9]=c[21]; k[3]=k[11]=c[23]; k[17]=k[19]=c[37];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
k[0]=k[6]=k[8]=c[26]; k[4]=k[10]=k[12]=c[30]; k[2]=k[14]=k[16]=k[18]=0;
|
|
k[1]=k[7]=k[9]=c[27]; k[5]=k[11]=k[13]=c[31]; k[3]=k[15]=k[17]=k[19]=0;
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
k[2]=k[8]=k[10]=c[28]; k[0]=k[4]=k[6]=k[16]=0; k[12]=k[14]=k[18]=c[38];
|
|
k[3]=k[9]=k[11]=c[29]; k[1]=k[5]=k[7]=k[17]=0; k[13]=k[15]=k[19]=c[39];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
b=modulus->w;
|
|
while(overshoot>0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
}
|
|
while (overshoot<0)
|
|
{
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
}
|
|
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#if MIRACL==16
|
|
#if MR_COMBA==10
|
|
|
|
/* 2^160-2^112+2^64+1 */
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
k[0]=k[4]=a[19]; k[1]=k[2]=k[3]=k[5]=k[6]=0; k[7]=a[10]; k[8]=a[11]; k[9]=a[12];
|
|
|
|
/*** ADDITION ***/
|
|
overshoot=carry;
|
|
a=c; c=t->w;
|
|
k[0]=k[1]=k[2]=k[3]=0; k[4]=k[7]=k[8]=c[17]; k[5]=c[18]; k[6]=c[12]; k[9]=0;
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
k[2]=c[12]; k[3]=k[6]=k[7]=c[16]; k[0]=k[4]=c[10]; k[1]=k[5]=c[11]; k[8]=k[9]=c[18];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
k[0]=k[3]=k[4]=c[13]; k[2]=k[5]=k[6]=c[15]; k[1]=k[7]=k[8]=k[9]=0;
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
k[1]=k[4]=k[5]=c[14]; k[0]=k[2]=k[3]=k[8]=0; k[6]=k[7]=k[9]=c[19];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
b=modulus->w;
|
|
while(overshoot>0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
}
|
|
while (overshoot<0)
|
|
{
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
}
|
|
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
#endif
|
|
#endif
|
|
|
|
#if MIRACL==32
|
|
|
|
#if MR_COMBA == 8
|
|
#ifdef MR_NOFULLWIDTH
|
|
|
|
/* Modulus is 2^255-19 - Experimental - not tested! */
|
|
|
|
w->w=&(t->w[10]);
|
|
w->len=9;
|
|
premult(_MIPP_ w,608,w);
|
|
incr(_MIPP_ w,19*(t->w[9]>>21),w);
|
|
t->w[9]&=(1<<21)-1;
|
|
t->len++;
|
|
z->len=10;
|
|
for (i=0;i<10;i++) z->w[i]=t->w[i];
|
|
comba_sub(z,w,z);
|
|
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#if MR_COMBA == 4
|
|
|
|
/* Special code for 2^127-1 - for 32-bit processor */
|
|
|
|
a=t->w;
|
|
k[0]=a[4]; k[1]=a[5]; k[2]=a[6]; k[3]=a[7];
|
|
a=b=k;
|
|
|
|
/*** DOUBLEIT ***/
|
|
|
|
a=t->w;
|
|
k[0]+=(a[3]>>31); k[3]|=(a[3]&0x80000000);
|
|
|
|
c=z->w;
|
|
|
|
/*** ADDITION ***/
|
|
|
|
a=z->w;
|
|
b=modulus->w;
|
|
|
|
if (z->w[3]>=modulus->w[3])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
|
|
#if MR_COMBA == 6
|
|
|
|
/* Special Code for 2^192-2^64-1 - assuming 32-bit processor */
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
k[0]=k[2]=a[6]; k[1]=k[3]=a[7]; k[4]=k[5]=0;
|
|
|
|
/*** ADDITION ***/
|
|
overshoot=carry;
|
|
a=c; c=t->w;
|
|
k[0]=k[1]=0; k[2]=k[4]=c[8]; k[3]=k[5]=c[9];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
k[0]=k[2]=k[4]=c[10]; k[1]=k[3]=k[5]=c[11];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
b=modulus->w;
|
|
while(overshoot>0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
}
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
|
|
#if MR_COMBA == 7
|
|
/* Special Code for 2^224-2^96+1 - assuming 32-bit processor */
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
k[0]=k[1]=k[2]=0; k[3]=a[7]; k[4]=a[8]; k[5]=a[9]; k[6]=a[10];
|
|
|
|
/*** ADDITION ***/
|
|
overshoot=carry;
|
|
a=c; c=t->w;
|
|
k[0]=k[1]=k[2]=k[6]=0; k[3]=c[11]; k[4]=c[12]; k[5]=c[13];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
k[0]=c[7]; k[1]=c[8]; k[2]=c[9]; k[3]=c[10]; k[4]=c[11]; k[5]=c[12]; k[6]=c[13];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
k[0]=c[11]; k[1]=c[12]; k[2]=c[13]; k[3]=k[4]=k[5]=k[6]=0;
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
b=modulus->w;
|
|
while (overshoot>0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
}
|
|
while (overshoot<0)
|
|
{
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
}
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
|
|
#if MR_COMBA == 8
|
|
#ifndef MR_NOFULLWIDTH
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
k[0]=k[1]=k[2]=0; k[3]=a[11]; k[4]=a[12]; k[5]=a[13]; k[6]=a[14]; k[7]=a[15];
|
|
|
|
/*** ADDITION ***/
|
|
overshoot=carry;
|
|
a=c; c=t->w;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=k[1]=k[2]=0; k[3]=c[12]; k[4]=c[13]; k[5]=c[14]; k[6]=c[15]; k[7]=0;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[8]; k[1]=c[9]; k[2]=c[10]; k[3]=k[4]=k[5]=0; k[6]=c[14]; k[7]=c[15];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[9]; k[1]=c[10]; k[2]=c[11]; k[3]=c[13]; k[4]=c[14]; k[5]=c[15]; k[6]=c[13]; k[7]=c[8];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[11]; k[1]=c[12]; k[2]=c[13]; k[3]=k[4]=k[5]=0; k[6]=c[8]; k[7]=c[10];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
k[0]=c[12]; k[1]=c[13]; k[2]=c[14]; k[3]=c[15]; k[4]=k[5]=0; k[6]=c[9]; k[7]=c[11];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
k[0]=c[13]; k[1]=c[14]; k[2]=c[15]; k[3]=c[8]; k[4]=c[9]; k[5]=c[10]; k[6]=0; k[7]=c[12];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
k[0]=c[14]; k[1]=c[15]; k[2]=0; k[3]=c[9]; k[4]=c[10]; k[5]=c[11]; k[6]=0; k[7]=c[13];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
b=modulus->w;
|
|
while (overshoot>0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
}
|
|
while (overshoot<0)
|
|
{
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
}
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#if MR_COMBA == 12
|
|
#ifndef MR_NOFULLWIDTH
|
|
|
|
/* NIST P-384 curve */
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
k[0]=k[1]=k[2]=k[3]=0; k[4]=a[21]; k[5]=a[22]; k[6]=a[23]; k[7]=k[8]=k[9]=k[10]=k[11]=0;
|
|
|
|
/*** ADDITION ***/
|
|
overshoot=carry;
|
|
a=c; c=t->w;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[12]; k[1]=c[13]; k[2]=c[14]; k[3]=c[15]; k[4]=c[16]; k[5]=c[17]; k[6]=c[18]; k[7]=c[19]; k[8]=c[20]; k[9]=c[21]; k[10]=c[22]; k[11]=c[23];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[21]; k[1]=c[22]; k[2]=c[23]; k[3]=c[12]; k[4]=c[13]; k[5]=c[14]; k[6]=c[15]; k[7]=c[16]; k[8]=c[17]; k[9]=c[18]; k[10]=c[19]; k[11]=c[20];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=k[2]=0; k[1]=c[23]; k[3]=c[20]; k[4]=c[12]; k[5]=c[13]; k[6]=c[14]; k[7]=c[15]; k[8]=c[16]; k[9]=c[17]; k[10]=c[18]; k[11]=c[19];
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=k[1]=k[2]=k[3]=0; k[4]=c[20]; k[5]=c[21]; k[6]=c[22]; k[7]=c[23]; k[8]=k[9]=k[10]=k[11]=0;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[20]; k[1]=k[2]=0; k[3]=c[21]; k[4]=c[22]; k[5]=c[23]; k[6]=k[7]=k[8]=k[9]=k[10]=k[11]=0;
|
|
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
|
|
k[0]=c[23]; k[1]=c[12]; k[2]=c[13]; k[3]=c[14]; k[4]=c[15]; k[5]=c[16]; k[6]=c[17]; k[7]=c[18]; k[8]=c[19]; k[9]=c[20]; k[10]=c[21]; k[11]=c[22];
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
k[0]=0; k[1]=c[20]; k[2]=c[21]; k[3]=c[22]; k[4]=c[23]; k[5]=k[6]=k[7]=k[8]=k[9]=k[10]=k[11]=0;
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
k[0]=k[1]=k[2]=0; k[3]=k[4]=c[23]; k[5]=k[6]=k[7]=k[8]=k[9]=k[10]=k[11]=0;
|
|
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
|
|
b=modulus->w;
|
|
while (overshoot>0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
overshoot-=carry;
|
|
}
|
|
while (overshoot<0)
|
|
{
|
|
/*** INCREMENT ***/
|
|
overshoot+=carry;
|
|
}
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#if MR_COMBA == 17
|
|
|
|
/* Special Code for 2^521-1 - assuming 32-bit processor */
|
|
|
|
/* split t into 521-bit halves, low half in a, high half in b */
|
|
|
|
a=t->w; b=k; c=z->w;
|
|
|
|
for (i=0;i<=16;i++)
|
|
b[i]=(a[i+16]>>9)|(a[i+17]<<23);
|
|
|
|
b[16]|=(-(a[16]>>9)<<9); /* clever stuff! Set top part of b[16] to minus *
|
|
* top part of a[16]. When added they cancel out */
|
|
|
|
/*** ADDITION ***/
|
|
/* ignore carry=1 */
|
|
a=z->w;
|
|
b=modulus->w;
|
|
|
|
if (z->w[MR_COMBA-1]>=modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0)
|
|
{
|
|
/*** DECREMENT ***/
|
|
}
|
|
}
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#else
|
|
modulus=mr_mip->modulus;
|
|
ndash=mr_mip->ndash;
|
|
w=mr_mip->w0;
|
|
if (t!=w) copy(t,w);
|
|
w->len=2*MR_COMBA+1;
|
|
a=w->w; b=modulus->w;
|
|
|
|
/*** REDC ***/ /* reduces a mod b */
|
|
|
|
for (i=MR_COMBA;i<(int)(z->len&MR_OBITS);i++) z->w[i]=0;
|
|
|
|
z->len=MR_COMBA;
|
|
for (i=0;i<MR_COMBA;i++) z->w[i]=w->w[i+MR_COMBA];
|
|
|
|
need_subtract=FALSE;
|
|
|
|
if (w->w[MR_COMBA+MR_COMBA]!=0)
|
|
{
|
|
need_subtract=TRUE;
|
|
}
|
|
else
|
|
{
|
|
if (z->w[MR_COMBA-1]!=0)
|
|
{
|
|
if (z->w[MR_COMBA-1]>modulus->w[MR_COMBA-1]) need_subtract=TRUE;
|
|
else
|
|
{
|
|
if (z->w[MR_COMBA-1]==modulus->w[MR_COMBA-1])
|
|
{
|
|
if (mr_compare(z,modulus)>=0) need_subtract=TRUE;
|
|
}
|
|
}
|
|
}
|
|
else mr_lzero(z);
|
|
}
|
|
|
|
if (need_subtract)
|
|
{
|
|
a=z->w; b=modulus->w;
|
|
/*** DECREMENT ***/
|
|
z->len=MR_COMBA;
|
|
if (z->w[MR_COMBA-1]==0) mr_lzero(z);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
#ifdef MR_SPECIAL
|
|
#ifdef MR_GENERALIZED_MERSENNE
|
|
#if MIRACL*MR_COMBA == 128
|
|
#define MR_FAST_MOD_ADD 2
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef MR_SPECIAL
|
|
#ifdef MR_PSEUDO_MERSENNE
|
|
#define MR_FAST_MOD_ADD 1
|
|
#define MR_OP(c) ( ((mr_utype)((c)<<M1)) >>M1)
|
|
#endif
|
|
#endif
|
|
|
|
void comba_modadd(_MIPD_ big x,big y,big w)
|
|
{ /* fast modular addition */
|
|
unsigned int i;
|
|
big modulus;
|
|
BOOL dodec;
|
|
mr_small *a,*b,*c;
|
|
mr_small carry,su;
|
|
#ifdef MR_WIN64
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#endif
|
|
|
|
#ifdef MR_FAST_MOD_ADD
|
|
mr_small sc,t,v;
|
|
#endif
|
|
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
modulus=mr_mip->modulus;
|
|
if (w!=x && w!=y)
|
|
{
|
|
for (i=MR_COMBA;i<(w->len&MR_OBITS);i++) w->w[i]=0;
|
|
/* zero(w); */
|
|
}
|
|
|
|
a=x->w; b=y->w; c=w->w;
|
|
/*** ADDITION ***/ /* add a and b, result in c */
|
|
w->len=MR_COMBA;
|
|
|
|
#ifdef MR_FAST_MOD_ADD
|
|
|
|
#if MR_FAST_MOD_ADD == 1
|
|
|
|
sc=(mr_small)0-modulus->w[0]; /* Modulus is 2^{MIRACL*MR_COMBA}-c. Here we calculate c */
|
|
t=MR_OP(carry)≻
|
|
v=w->w[0]+t;
|
|
if (v>=w->w[0])
|
|
{
|
|
w->w[0]=v;
|
|
carry=0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if MR_FAST_MOD_ADD == 2
|
|
|
|
t=(mr_small)(w->w[MR_COMBA-1]>>M1);
|
|
v=w->w[0]+t;
|
|
if (v>=w->w[0])
|
|
{
|
|
w->w[MR_COMBA-1]-=(mr_small)(t<<M1);
|
|
w->w[0]=v;
|
|
carry=0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
/* if sum is greater than modulus a decrement will be required */
|
|
|
|
dodec=FALSE;
|
|
if (carry) dodec=TRUE; /* possible misprediction here */
|
|
else
|
|
{
|
|
if (w->w[MR_COMBA-1]>modulus->w[MR_COMBA-1]) dodec=TRUE; /* possible misprediction here */
|
|
else
|
|
{
|
|
if (w->w[MR_COMBA-1]==modulus->w[MR_COMBA-1]) /* this will be very rare, so easily predicted */
|
|
{ /* trying to avoid calling this slow function */
|
|
if (mr_compare(w,modulus)>=0) dodec=TRUE; /* do full comparison */
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dodec) /* prediction here correlated to earlier predictions, so should predict nicely */
|
|
{
|
|
a=w->w; b=modulus->w;
|
|
/*** DECREMENT ***/ /* decrement b from a */
|
|
}
|
|
|
|
if (w->w[MR_COMBA-1]==0) mr_lzero(w);
|
|
|
|
}
|
|
|
|
void comba_add(big x,big y,big w)
|
|
{ /* fast addition */
|
|
unsigned int i;
|
|
mr_small *a,*b,*c;
|
|
mr_small carry,su;
|
|
#ifdef MR_WIN64
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#endif
|
|
|
|
if (w!=x && w!=y)
|
|
{
|
|
for (i=MR_COMBA;i<(w->len&MR_OBITS);i++) w->w[i]=0;
|
|
/* zero(w); */
|
|
}
|
|
|
|
a=x->w; b=y->w; c=w->w;
|
|
/*** ADDITION ***/ /* add a and b, result in c */
|
|
|
|
w->len=MR_COMBA;
|
|
if (w->w[MR_COMBA-1]==0) mr_lzero(w);
|
|
}
|
|
|
|
void comba_modsub(_MIPD_ big x,big y,big w)
|
|
{ /* fast modular subtraction */
|
|
unsigned int i;
|
|
big modulus;
|
|
mr_small *a,*b,*c;
|
|
mr_small carry,su;
|
|
#ifdef MR_WIN64
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
mr_small ma,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#endif
|
|
#ifdef MR_FAST_MOD_ADD
|
|
mr_small sc,t,v;
|
|
#endif
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
modulus=mr_mip->modulus;
|
|
if (x!=w && y!=w)
|
|
{
|
|
for (i=MR_COMBA;i<(w->len&MR_OBITS);i++) w->w[i]=0;
|
|
/* zero(w); */
|
|
}
|
|
|
|
a=x->w; b=y->w; c=w->w;
|
|
/*** SUBTRACTION ***/
|
|
|
|
#ifdef MR_FAST_MOD_ADD
|
|
|
|
#if MR_FAST_MOD_ADD == 1
|
|
|
|
sc=(mr_small)0-modulus->w[0]; /* Modulus is 2^{MIRACL*MR_COMBA}-c. Here we calculate c */
|
|
t=MR_OP(carry)≻
|
|
v=w->w[0]-t;
|
|
if (v<=w->w[0])
|
|
{
|
|
w->w[0]=v;
|
|
carry=0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if MR_FAST_MOD_ADD == 2
|
|
|
|
t=(w->w[MR_COMBA-1]>>M1);
|
|
v=w->w[0]-t;
|
|
if (v<=w->w[0])
|
|
{
|
|
w->w[MR_COMBA-1]-=(t<<M1);
|
|
w->w[0]=v;
|
|
carry=0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
if (carry)
|
|
{
|
|
a=w->w; b=modulus->w;
|
|
/*** INCREMENT ***/ /* add a and b, result in c */
|
|
|
|
}
|
|
w->len=MR_COMBA;
|
|
if (w->w[MR_COMBA-1]==0) mr_lzero(w);
|
|
}
|
|
|
|
void comba_sub(big x,big y,big w)
|
|
{ /* fast subtraction */
|
|
unsigned int i;
|
|
mr_small *a,*b,*c;
|
|
mr_small carry,su;
|
|
#ifdef MR_WIN64
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
mr_small ma,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#endif
|
|
|
|
if (x!=w && y!=w)
|
|
{
|
|
for (i=MR_COMBA;i<(w->len&MR_OBITS);i++) w->w[i]=0;
|
|
/* zero(w); */
|
|
}
|
|
|
|
a=x->w; b=y->w; c=w->w;
|
|
/*** SUBTRACTION ***/
|
|
|
|
w->len=MR_COMBA;
|
|
if (w->w[MR_COMBA-1]==0) mr_lzero(w);
|
|
}
|
|
|
|
#ifndef MR_NO_LAZY_REDUCTION
|
|
|
|
void comba_double_modadd(_MIPD_ big x,big y,big w)
|
|
{ /* fast modular addition */
|
|
unsigned int i;
|
|
big modulus;
|
|
BOOL dodec;
|
|
mr_small *a,*b,*c;
|
|
mr_small carry,su;
|
|
#ifdef MR_WIN64
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
mr_small ma,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#endif
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
modulus=mr_mip->pR;
|
|
if (w!=x && w!=y)
|
|
{
|
|
for (i=2*MR_COMBA;i<(w->len&MR_OBITS);i++) w->w[i]=0;
|
|
/* zero(w); */
|
|
}
|
|
|
|
a=x->w; b=y->w; c=w->w;
|
|
/*** ADDITION2 ***/ /* add a and b, result in c */
|
|
w->len=2*MR_COMBA;
|
|
|
|
/* if sum is greater than modulus a decrement will be required */
|
|
|
|
dodec=FALSE;
|
|
if (carry) dodec=TRUE; /* possible misprediction here */
|
|
else
|
|
{
|
|
if (w->w[2*MR_COMBA-1]>modulus->w[2*MR_COMBA-1]) dodec=TRUE; /* possible misprediction here */
|
|
else
|
|
{
|
|
if (w->w[2*MR_COMBA-1]==modulus->w[2*MR_COMBA-1]) /* this will be very rare, so easily predicted */
|
|
{
|
|
if (mr_compare(w,modulus)>=0) dodec=TRUE; /* do full comparison */
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dodec) /* prediction here correlated to earlier predictions, so should predict nicely */
|
|
{
|
|
a=&(w->w[MR_COMBA]); b=&(modulus->w[MR_COMBA]);
|
|
/*** DECREMENT ***/ /* decrement b from a */
|
|
}
|
|
if (w->w[2*MR_COMBA-1]==0) mr_lzero(w);
|
|
|
|
}
|
|
|
|
void comba_double_add(big x,big y,big w)
|
|
{ /* fast modular addition */
|
|
unsigned int i;
|
|
mr_small *a,*b,*c;
|
|
mr_small carry,su;
|
|
#ifdef MR_WIN64
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
mr_small ma,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#endif
|
|
|
|
if (w!=x && w!=y)
|
|
{
|
|
for (i=2*MR_COMBA;i<(w->len&MR_OBITS);i++) w->w[i]=0;
|
|
/* zero(w); */
|
|
}
|
|
|
|
a=x->w; b=y->w; c=w->w;
|
|
/*** ADDITION2 ***/ /* add a and b, result in c */
|
|
w->len=2*MR_COMBA;
|
|
|
|
if (w->w[2*MR_COMBA-1]==0) mr_lzero(w);
|
|
|
|
}
|
|
|
|
void comba_double_modsub(_MIPD_ big x,big y,big w)
|
|
{ /* fast modular subtraction */
|
|
unsigned int i;
|
|
big modulus;
|
|
mr_small *a,*b,*c;
|
|
mr_small carry,su;
|
|
#ifdef MR_WIN64
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
mr_small ma,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#endif
|
|
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
modulus=mr_mip->modulus;
|
|
if (x!=w && y!=w)
|
|
{
|
|
for (i=2*MR_COMBA;i<(w->len&MR_OBITS);i++) w->w[i]=0;
|
|
/* zero(w); */
|
|
}
|
|
|
|
a=x->w; b=y->w; c=w->w;
|
|
/*** SUBTRACTION2 ***/
|
|
|
|
if (carry)
|
|
{
|
|
a=&(w->w[MR_COMBA]); b=modulus->w;
|
|
/*** INCREMENT ***/ /* add a and b, result in c */
|
|
|
|
}
|
|
w->len=2*MR_COMBA;
|
|
if (w->w[2*MR_COMBA-1]==0) mr_lzero(w);
|
|
}
|
|
|
|
void comba_double_sub(big x,big y,big w)
|
|
{ /* fast modular subtraction */
|
|
unsigned int i;
|
|
mr_small *a,*b,*c;
|
|
mr_small carry,su;
|
|
#ifdef MR_WIN64
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
mr_small ma,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#endif
|
|
|
|
if (x!=w && y!=w)
|
|
{
|
|
for (i=2*MR_COMBA;i<(w->len&MR_OBITS);i++) w->w[i]=0;
|
|
/* zero(w); */
|
|
}
|
|
|
|
a=x->w; b=y->w; c=w->w;
|
|
/*** SUBTRACTION2 ***/
|
|
|
|
w->len=2*MR_COMBA;
|
|
if (w->w[2*MR_COMBA-1]==0) mr_lzero(w);
|
|
}
|
|
|
|
#endif
|
|
|
|
void comba_negate(_MIPD_ big x,big w)
|
|
{ /* fast modular subtraction */
|
|
unsigned int i;
|
|
big modulus;
|
|
mr_small *a,*b,*c;
|
|
mr_small carry,su;
|
|
#ifdef MR_WIN64
|
|
mr_small ma,mb,u;
|
|
#endif
|
|
#ifdef MR_ITANIUM
|
|
mr_small ma,u;
|
|
#endif
|
|
#ifdef MR_NOASM
|
|
mr_large u;
|
|
#endif
|
|
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
modulus=mr_mip->modulus;
|
|
if (w!=x)
|
|
{
|
|
for (i=MR_COMBA;i<(w->len&MR_OBITS);i++) w->w[i]=0;
|
|
/* zero(w); */
|
|
}
|
|
a=modulus->w; b=x->w; c=w->w;
|
|
|
|
/*** SUBTRACTION ***/
|
|
|
|
w->len=MR_COMBA;
|
|
if (w->w[MR_COMBA-1]==0) mr_lzero(w);
|
|
}
|
|
|
|
#endif
|