164 lines
5.9 KiB
C
164 lines
5.9 KiB
C
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
* MIRACL Greatest Common Divisor module.
|
|
* mrgcd.c
|
|
*/
|
|
|
|
#include "miracl.h"
|
|
|
|
#ifdef MR_FP
|
|
#include <math.h>
|
|
#endif
|
|
|
|
int egcd(_MIPD_ big x,big y,big z)
|
|
{ /* greatest common divisor z=gcd(x,y) by Euclids *
|
|
* method using Lehmers algorithm for big numbers */
|
|
int q,r,a,b,c,d,n;
|
|
mr_small sr,m,sm;
|
|
mr_small u,v,lq,lr;
|
|
#ifdef MR_FP
|
|
mr_small dres;
|
|
#endif
|
|
big t;
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
if (mr_mip->ERNUM) return 0;
|
|
|
|
MR_IN(12)
|
|
|
|
copy(x,mr_mip->w1);
|
|
copy(y,mr_mip->w2);
|
|
insign(PLUS,mr_mip->w1);
|
|
insign(PLUS,mr_mip->w2);
|
|
a=b=c=d=0;
|
|
while (size(mr_mip->w2)!=0)
|
|
{
|
|
/* printf("a= %d b= %d c= %d d=%d\n",a,b,c,d); */
|
|
if (b==0)
|
|
{ /* update w1 and w2 */
|
|
divide(_MIPP_ mr_mip->w1,mr_mip->w2,mr_mip->w2);
|
|
t=mr_mip->w1,mr_mip->w1=mr_mip->w2,mr_mip->w2=t; /* swap(w1,w2) */
|
|
}
|
|
else
|
|
{
|
|
premult(_MIPP_ mr_mip->w1,c,z);
|
|
premult(_MIPP_ mr_mip->w1,a,mr_mip->w1);
|
|
premult(_MIPP_ mr_mip->w2,b,mr_mip->w0);
|
|
premult(_MIPP_ mr_mip->w2,d,mr_mip->w2);
|
|
add(_MIPP_ mr_mip->w1,mr_mip->w0,mr_mip->w1);
|
|
add(_MIPP_ mr_mip->w2,z,mr_mip->w2);
|
|
}
|
|
if (mr_mip->ERNUM || size(mr_mip->w2)==0) break;
|
|
n=(int)mr_mip->w1->len;
|
|
if (mr_mip->w2->len==1)
|
|
{ /* special case if mr_mip->w2 is now small */
|
|
sm=mr_mip->w2->w[0];
|
|
#ifdef MR_FP_ROUNDING
|
|
sr=mr_sdiv(_MIPP_ mr_mip->w1,sm,mr_invert(sm),mr_mip->w1);
|
|
#else
|
|
sr=mr_sdiv(_MIPP_ mr_mip->w1,sm,mr_mip->w1);
|
|
#endif
|
|
if (sr==0)
|
|
{
|
|
copy(mr_mip->w2,mr_mip->w1);
|
|
break;
|
|
}
|
|
zero(mr_mip->w1);
|
|
mr_mip->w1->len=1;
|
|
mr_mip->w1->w[0]=sr;
|
|
while ((sr=MR_REMAIN(mr_mip->w2->w[0],mr_mip->w1->w[0]))!=0)
|
|
mr_mip->w2->w[0]=mr_mip->w1->w[0],mr_mip->w1->w[0]=sr;
|
|
break;
|
|
}
|
|
a=1;
|
|
b=0;
|
|
c=0;
|
|
d=1;
|
|
m=mr_mip->w1->w[n-1]+1;
|
|
/* printf("m= %d\n",m); */
|
|
#ifndef MR_SIMPLE_BASE
|
|
if (mr_mip->base==0)
|
|
{
|
|
#endif
|
|
#ifndef MR_NOFULLWIDTH
|
|
if (m==0)
|
|
{
|
|
u=mr_mip->w1->w[n-1];
|
|
v=mr_mip->w2->w[n-1];
|
|
}
|
|
else
|
|
{
|
|
/* printf("w1[n-1]= %d w1[n-2]= %d\n", mr_mip->w1->w[n-1],mr_mip->w1->w[n-2]);
|
|
printf("w2[n-1]= %d w2[n-2]= %d\n", mr_mip->w2->w[n-1],mr_mip->w2->w[n-2]);*/
|
|
u=muldvm(mr_mip->w1->w[n-1],mr_mip->w1->w[n-2],m,&sr);
|
|
v=muldvm(mr_mip->w2->w[n-1],mr_mip->w2->w[n-2],m,&sr);
|
|
}
|
|
#endif
|
|
#ifndef MR_SIMPLE_BASE
|
|
}
|
|
else
|
|
{
|
|
u=muldiv(mr_mip->w1->w[n-1],mr_mip->base,mr_mip->w1->w[n-2],m,&sr);
|
|
v=muldiv(mr_mip->w2->w[n-1],mr_mip->base,mr_mip->w2->w[n-2],m,&sr);
|
|
}
|
|
#endif
|
|
/* printf("u= %d v= %d\n",u,v);*/
|
|
|
|
forever
|
|
{ /* work only with most significant piece */
|
|
if (((v+c)==0) || ((v+d)==0)) break;
|
|
lq=MR_DIV((u+a),(v+c));
|
|
if (lq!=MR_DIV((u+b),(v+d))) break;
|
|
if (lq>=(mr_small)(MR_TOOBIG/mr_abs(d))) break;
|
|
q=(int)lq;
|
|
r=a-q*c;
|
|
a=c;
|
|
c=r;
|
|
r=b-q*d;
|
|
b=d;
|
|
d=r;
|
|
lr=u-lq*v;
|
|
u=v;
|
|
v=lr;
|
|
}
|
|
}
|
|
copy(mr_mip->w1,z);
|
|
MR_OUT
|
|
return (size(mr_mip->w1));
|
|
}
|
|
|