KGC_TEST/KGCAPP/3rdparty/miracl/source/mrscrt.c

262 lines
7.3 KiB
C

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
* MIRACL Chinese Remainder Thereom routines (for use with small moduli)
* mrscrt.c
*/
#include <stdlib.h>
#include "miracl.h"
#ifdef MR_FP
#include <math.h>
#endif
static mr_utype in_range(mr_utype x,mr_utype y)
{ /* x=x%y, and positive */
mr_utype r;
#ifdef MR_FP
mr_small dres;
#endif
r=MR_REMAIN(x,y);
if (r<0) r+=y;
return r;
}
#ifndef MR_STATIC
BOOL scrt_init(_MIPD_ small_chinese *c,int r,mr_utype *moduli)
{ /* calculate CRT constants - returns FALSE if there is a problem */
int i,j,k;
if (r<1) return FALSE;
if (r==1)
{
c->NP=1;
c->M=(mr_utype *)mr_alloc(_MIPP_ r,sizeof(mr_utype));
if (c->M==NULL) return FALSE;
c->M[0]=moduli[0];
return TRUE;
}
for (i=0;i<r;i++) if (moduli[i]<2) return FALSE;
c->M=(mr_utype *)mr_alloc(_MIPP_ r,sizeof(mr_utype));
if (c->M==NULL) return FALSE;
c->C=(mr_utype *)mr_alloc(_MIPP_ r*(r-1)/2,sizeof(mr_utype));
if (c->C==NULL)
{ /* no room */
mr_free(c->M);
return FALSE;
}
c->V=(mr_utype *)mr_alloc(_MIPP_ r,sizeof(mr_utype));
if (c->V==NULL)
{ /* no room */
mr_free(c->M);
mr_free(c->C);
return FALSE;
}
for (k=0,i=0;i<r;i++)
{
c->M[i]=moduli[i];
for (j=0;j<i;j++,k++)
c->C[k]=invers(c->M[j],c->M[i]);
}
c->NP=r;
return TRUE;
}
void scrt_end(small_chinese *c)
{ /* clean up after CRT */
if (c->NP<1)
{
c->NP=0;
return;
}
if (c->NP==1)
{
mr_free(c->M);
c->NP=0;
return;
}
mr_free(c->M);
mr_free(c->V);
mr_free(c->C);
c->NP=0;
}
#endif
void scrt(_MIPD_ small_chinese *c,mr_utype *u,big x)
{ /* Chinese Remainder Thereom *
* Calculate x given remainders u[i] mod M[i] */
int i,j,k,len;
mr_utype *V,*C,*M;
mr_small t;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifdef MR_FP_ROUNDING
mr_large im;
#endif
V=c->V;
C=c->C;
M=c->M;
len=c->NP;
if (len<1) return;
if (len==1)
{
t=smul(1,in_range(u[0],M[0]),M[0]);
convert(_MIPP_ 1,mr_mip->w5);
mr_pmul(_MIPP_ mr_mip->w5,t,x);
return;
}
V[0]=u[0];
k=0;
for (i=1;i<len;i++)
{ /* Knuth P. 274 */
V[i]=u[i] - V[0];
#ifdef MR_FP_ROUNDING
im=mr_invert(M[i]);
imuldiv(V[i],C[k],(mr_small)0,M[i],im,&V[i]);
if (V[i]<0) V[i]+=M[i];
#else
V[i]=smul(in_range(V[i],M[i]),C[k],M[i]);
#endif
k++;
if (i==1) continue;
#ifndef MR_FP
#ifdef INLINE_ASM
#if INLINE_ASM == 3
#define MR_IMPASM
ASM mov ebx,DWORD PTR V
ASM mov esi,DWORD PTR M
ASM mov edi,DWORD PTR C
ASM mov ecx,1
ASM mov edx,DWORD PTR i
ASM mov esi,[esi+4*edx]
s1:
ASM cmp ecx,edx
ASM jge s2
ASM mov eax,[ebx+4*edx]
ASM push edx
ASM sub eax,[ebx+4*ecx]
ASM cdq
ASM idiv esi
ASM mov eax,edx
ASM add eax,esi
ASM mov edx,DWORD PTR k
ASM mul DWORD PTR [edi+4*edx]
ASM div esi
ASM mov eax,edx
ASM pop edx
ASM mov [ebx+4*edx],eax
ASM inc DWORD PTR k
ASM inc ecx
ASM jmp s1
s2:
ASM nop
#endif
#if INLINE_ASM == 4
#define MR_IMPASM
ASM (
"movl %0,%%ecx\n"
"movl %1,%%ebx\n"
"movl %2,%%esi\n"
"movl %3,%%edi\n"
"movl %4,%%edx\n"
"pushl %%ebp\n"
"movl $1,%%ebp\n"
"movl (%%esi,%%edx,4),%%esi\n"
"0:\n"
"cmpl %%edx,%%ebp\n"
"jge 1f\n"
"movl (%%ebx,%%edx,4),%%eax\n"
"subl (%%ebx,%%ebp,4),%%eax\n"
"pushl %%edx\n"
"cltd \n"
"idivl %%esi\n"
"movl %%edx,%%eax\n"
"addl %%esi,%%eax\n"
"mull (%%edi,%%ecx,4)\n"
"divl %%esi\n"
"movl %%edx,%%eax\n"
"popl %%edx\n"
"movl %%eax,(%%ebx,%%edx,4)\n"
"incl %%ecx\n"
"incl %%ebp\n"
"jmp 0b\n"
"1:\n"
"popl %%ebp\n"
"movl %%ecx,%0\n"
:"=m"(k)
:"m"(V),"m"(M),"m"(C),"m"(i)
:"eax","edi","esi","ebx","ecx","edx","memory"
);
#endif
#endif
#endif
#ifndef MR_IMPASM
for (j=1;j<i;j++,k++)
{
V[i]-=V[j];
#ifdef MR_FP_ROUNDING
imuldiv(V[i],C[k],(mr_small)0,M[i],im,&V[i]);
if (V[i]<0) V[i]+=M[i];
#else
V[i]=smul(in_range(V[i],M[i]),C[k],M[i]);
#endif
}
#endif
}
convert(_MIPP_ 1,x);
mr_pmul(_MIPP_ x,(mr_small)V[0],x);
convert(_MIPP_ 1,mr_mip->w5);
for (j=1;j<len;j++)
{
mr_pmul(_MIPP_ mr_mip->w5,(mr_small)(M[j-1]),mr_mip->w5);
mr_pmul(_MIPP_ mr_mip->w5,(mr_small)(V[j]),mr_mip->w0);
mr_padd(_MIPP_ x,mr_mip->w0,x);
}
}