262 lines
7.3 KiB
C
262 lines
7.3 KiB
C
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
* MIRACL Chinese Remainder Thereom routines (for use with small moduli)
|
|
* mrscrt.c
|
|
*/
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include "miracl.h"
|
|
|
|
#ifdef MR_FP
|
|
#include <math.h>
|
|
#endif
|
|
|
|
static mr_utype in_range(mr_utype x,mr_utype y)
|
|
{ /* x=x%y, and positive */
|
|
mr_utype r;
|
|
#ifdef MR_FP
|
|
mr_small dres;
|
|
#endif
|
|
r=MR_REMAIN(x,y);
|
|
if (r<0) r+=y;
|
|
return r;
|
|
}
|
|
|
|
#ifndef MR_STATIC
|
|
|
|
BOOL scrt_init(_MIPD_ small_chinese *c,int r,mr_utype *moduli)
|
|
{ /* calculate CRT constants - returns FALSE if there is a problem */
|
|
int i,j,k;
|
|
if (r<1) return FALSE;
|
|
if (r==1)
|
|
{
|
|
c->NP=1;
|
|
c->M=(mr_utype *)mr_alloc(_MIPP_ r,sizeof(mr_utype));
|
|
if (c->M==NULL) return FALSE;
|
|
c->M[0]=moduli[0];
|
|
return TRUE;
|
|
}
|
|
for (i=0;i<r;i++) if (moduli[i]<2) return FALSE;
|
|
c->M=(mr_utype *)mr_alloc(_MIPP_ r,sizeof(mr_utype));
|
|
if (c->M==NULL) return FALSE;
|
|
c->C=(mr_utype *)mr_alloc(_MIPP_ r*(r-1)/2,sizeof(mr_utype));
|
|
if (c->C==NULL)
|
|
{ /* no room */
|
|
mr_free(c->M);
|
|
return FALSE;
|
|
}
|
|
c->V=(mr_utype *)mr_alloc(_MIPP_ r,sizeof(mr_utype));
|
|
if (c->V==NULL)
|
|
{ /* no room */
|
|
mr_free(c->M);
|
|
mr_free(c->C);
|
|
return FALSE;
|
|
}
|
|
for (k=0,i=0;i<r;i++)
|
|
{
|
|
c->M[i]=moduli[i];
|
|
for (j=0;j<i;j++,k++)
|
|
c->C[k]=invers(c->M[j],c->M[i]);
|
|
}
|
|
c->NP=r;
|
|
return TRUE;
|
|
}
|
|
|
|
void scrt_end(small_chinese *c)
|
|
{ /* clean up after CRT */
|
|
if (c->NP<1)
|
|
{
|
|
c->NP=0;
|
|
return;
|
|
}
|
|
if (c->NP==1)
|
|
{
|
|
mr_free(c->M);
|
|
c->NP=0;
|
|
return;
|
|
}
|
|
mr_free(c->M);
|
|
mr_free(c->V);
|
|
mr_free(c->C);
|
|
c->NP=0;
|
|
}
|
|
|
|
#endif
|
|
|
|
void scrt(_MIPD_ small_chinese *c,mr_utype *u,big x)
|
|
{ /* Chinese Remainder Thereom *
|
|
* Calculate x given remainders u[i] mod M[i] */
|
|
int i,j,k,len;
|
|
mr_utype *V,*C,*M;
|
|
mr_small t;
|
|
#ifdef MR_OS_THREADS
|
|
miracl *mr_mip=get_mip();
|
|
#endif
|
|
#ifdef MR_FP_ROUNDING
|
|
mr_large im;
|
|
#endif
|
|
V=c->V;
|
|
C=c->C;
|
|
M=c->M;
|
|
len=c->NP;
|
|
if (len<1) return;
|
|
if (len==1)
|
|
{
|
|
t=smul(1,in_range(u[0],M[0]),M[0]);
|
|
convert(_MIPP_ 1,mr_mip->w5);
|
|
mr_pmul(_MIPP_ mr_mip->w5,t,x);
|
|
return;
|
|
}
|
|
V[0]=u[0];
|
|
k=0;
|
|
for (i=1;i<len;i++)
|
|
{ /* Knuth P. 274 */
|
|
V[i]=u[i] - V[0];
|
|
#ifdef MR_FP_ROUNDING
|
|
im=mr_invert(M[i]);
|
|
imuldiv(V[i],C[k],(mr_small)0,M[i],im,&V[i]);
|
|
if (V[i]<0) V[i]+=M[i];
|
|
#else
|
|
V[i]=smul(in_range(V[i],M[i]),C[k],M[i]);
|
|
#endif
|
|
k++;
|
|
if (i==1) continue;
|
|
#ifndef MR_FP
|
|
#ifdef INLINE_ASM
|
|
#if INLINE_ASM == 3
|
|
#define MR_IMPASM
|
|
|
|
ASM mov ebx,DWORD PTR V
|
|
ASM mov esi,DWORD PTR M
|
|
ASM mov edi,DWORD PTR C
|
|
ASM mov ecx,1
|
|
ASM mov edx,DWORD PTR i
|
|
ASM mov esi,[esi+4*edx]
|
|
s1:
|
|
ASM cmp ecx,edx
|
|
ASM jge s2
|
|
|
|
ASM mov eax,[ebx+4*edx]
|
|
ASM push edx
|
|
|
|
ASM sub eax,[ebx+4*ecx]
|
|
ASM cdq
|
|
ASM idiv esi
|
|
ASM mov eax,edx
|
|
ASM add eax,esi
|
|
|
|
ASM mov edx,DWORD PTR k
|
|
ASM mul DWORD PTR [edi+4*edx]
|
|
ASM div esi
|
|
|
|
ASM mov eax,edx
|
|
|
|
ASM pop edx
|
|
ASM mov [ebx+4*edx],eax
|
|
ASM inc DWORD PTR k
|
|
ASM inc ecx
|
|
ASM jmp s1
|
|
s2:
|
|
ASM nop
|
|
#endif
|
|
|
|
#if INLINE_ASM == 4
|
|
#define MR_IMPASM
|
|
ASM (
|
|
"movl %0,%%ecx\n"
|
|
"movl %1,%%ebx\n"
|
|
"movl %2,%%esi\n"
|
|
"movl %3,%%edi\n"
|
|
"movl %4,%%edx\n"
|
|
"pushl %%ebp\n"
|
|
"movl $1,%%ebp\n"
|
|
"movl (%%esi,%%edx,4),%%esi\n"
|
|
"0:\n"
|
|
"cmpl %%edx,%%ebp\n"
|
|
"jge 1f\n"
|
|
"movl (%%ebx,%%edx,4),%%eax\n"
|
|
"subl (%%ebx,%%ebp,4),%%eax\n"
|
|
"pushl %%edx\n"
|
|
"cltd \n"
|
|
"idivl %%esi\n"
|
|
"movl %%edx,%%eax\n"
|
|
"addl %%esi,%%eax\n"
|
|
|
|
"mull (%%edi,%%ecx,4)\n"
|
|
"divl %%esi\n"
|
|
"movl %%edx,%%eax\n"
|
|
"popl %%edx\n"
|
|
"movl %%eax,(%%ebx,%%edx,4)\n"
|
|
"incl %%ecx\n"
|
|
"incl %%ebp\n"
|
|
"jmp 0b\n"
|
|
"1:\n"
|
|
"popl %%ebp\n"
|
|
"movl %%ecx,%0\n"
|
|
:"=m"(k)
|
|
:"m"(V),"m"(M),"m"(C),"m"(i)
|
|
:"eax","edi","esi","ebx","ecx","edx","memory"
|
|
);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#ifndef MR_IMPASM
|
|
for (j=1;j<i;j++,k++)
|
|
{
|
|
V[i]-=V[j];
|
|
#ifdef MR_FP_ROUNDING
|
|
imuldiv(V[i],C[k],(mr_small)0,M[i],im,&V[i]);
|
|
if (V[i]<0) V[i]+=M[i];
|
|
#else
|
|
V[i]=smul(in_range(V[i],M[i]),C[k],M[i]);
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
convert(_MIPP_ 1,x);
|
|
mr_pmul(_MIPP_ x,(mr_small)V[0],x);
|
|
convert(_MIPP_ 1,mr_mip->w5);
|
|
for (j=1;j<len;j++)
|
|
{
|
|
mr_pmul(_MIPP_ mr_mip->w5,(mr_small)(M[j-1]),mr_mip->w5);
|
|
mr_pmul(_MIPP_ mr_mip->w5,(mr_small)(V[j]),mr_mip->w0);
|
|
mr_padd(_MIPP_ x,mr_mip->w0,x);
|
|
}
|
|
}
|
|
|