KGC_TEST/KGCAPP/3rdparty/miracl/source/williams.c

188 lines
5.8 KiB
C

/*
* Program to factor big numbers using Williams (p+1) method.
* Works when for some prime divisor p of n, p+1 has only
* small factors.
* See "Speeding the Pollard and Elliptic Curve Methods"
* by Peter Montgomery, Math. Comp. Vol. 48. Jan. 1987 pp243-264
*/
#include <stdio.h>
#include <stdlib.h>
#include "miracl.h"
#define LIMIT1 10000 /* must be int, and > MULT/2 */
#define LIMIT2 500000L /* may be long */
#define MULT 2310 /* must be int, product of small primes 2.3.. */
#define NEXT 13 /* next small prime */
#define NTRYS 3 /* number of attempts */
static BOOL plus[1+MULT/2],minus[1+MULT/2];
miracl *mip;
void marks(long start)
{ /* mark non-primes in this interval. Note *
* that those < NEXT are dealt with already */
int i,pr,j,k;
for (j=1;j<=MULT/2;j+=2) plus[j]=minus[j]=TRUE;
for (i=0;;i++)
{ /* mark in both directions */
pr=mip->PRIMES[i];
if (pr<NEXT) continue;
if ((long)pr*pr>start) break;
k=pr-start%pr;
for (j=k;j<=MULT/2;j+=pr)
plus[j]=FALSE;
k=start%pr;
for (j=k;j<=MULT/2;j+=pr)
minus[j]=FALSE;
}
}
int main()
{ /* factoring program using Williams (p+1) method */
int k,phase,m,nt,iv,pos,btch;
long i,p,pa,interval;
big b,q,n,fp,fvw,fd,fn,t;
static big fu[1+MULT/2];
static BOOL cp[1+MULT/2];
mip=mirsys(30,0);
b=mirvar(0);
q=mirvar(0);
n=mirvar(0);
t=mirvar(0);
fp=mirvar(0);
fvw=mirvar(0);
fd=mirvar(0);
fn=mirvar(0);
gprime(LIMIT1);
for (m=1;m<=MULT/2;m+=2)
if (igcd(MULT,m)==1)
{
fu[m]=mirvar(0);
cp[m]=TRUE;
}
else cp[m]=FALSE;
printf("input number to be factored\n");
cinnum(n,stdin);
if (isprime(n))
{
printf("this number is prime!\n");
return 0;
}
for (nt=0,k=3;k<10;k++)
{ /* try more than once for p+1 condition (may be p-1) */
convert(k,b); /* try b=3,4,5.. */
convert((k*k-4),t);
if (egcd(t,n,t)!=1) continue; /* check (b*b-4,n)!=0 */
nt++;
phase=1;
p=0;
btch=50;
i=0;
printf("phase 1 - trying all primes less than %d\n",LIMIT1);
printf("prime= %8ld",p);
forever
{ /* main loop */
if (phase==1)
{ /* looking for all factors of p+1 < LIMIT1 */
p=mip->PRIMES[i];
if (mip->PRIMES[i+1]==0)
{ /* now change gear */
phase=2;
printf("\nphase 2 - trying last prime less than %ld\n"
,LIMIT2);
printf("prime= %8ld",p);
copy(b,fu[1]);
copy(b,fp);
mad(b,b,b,n,n,fd);
decr(fd,2,fd);
negify(b,t);
mad(fd,b,t,n,n,fn);
for (m=5;m<=MULT/2;m+=2)
{ /* store fu[m] = Vm(b) */
negify(fp,t);
mad(fn,fd,t,n,n,t);
copy(fn,fp);
copy(t,fn);
if (!cp[m]) continue;
copy(t,fu[m]);
}
convert(MULT,t);
lucas(b,t,n,fp,fd);
iv=(int)(p/MULT);
if (p%MULT>MULT/2) iv++;
interval=(long)iv*MULT;
p=interval+1;
convert(iv,t);
lucas(fd,t,n,fp,fvw);
negify(fp,fp);
subtract(fvw,fu[p%MULT],q);
marks(interval);
btch*=100;
i++;
continue;
}
pa=p;
while ((LIMIT1/p) > pa) pa*=p;
convert((int)pa,t);
lucas(b,t,n,fp,q);
copy(q,b);
decr(q,2,q);
}
else
{ /* phase 2 - looking for last large prime factor of (p+1) */
p+=2;
pos=(int)(p%MULT);
if (pos>MULT/2)
{ /* increment giant step */
iv++;
interval=(long)iv*MULT;
p=interval+1;
marks(interval);
pos=1;
copy(fvw,t);
mad(fvw,fd,fp,n,n,fvw);
negify(t,fp);
}
if (!cp[pos]) continue;
/* if neither interval+/-pos is prime, don't bother */
if (!plus[pos] && !minus[pos]) continue;
subtract(fvw,fu[pos],t);
mad(q,t,t,n,n,q); /* batching gcds */
}
if (i++%btch==0)
{ /* try for a solution */
printf("\b\b\b\b\b\b\b\b%8ld",p);
fflush(stdout);
egcd(q,n,t);
if (size(t)==1)
{
if (p>LIMIT2) break;
else continue;
}
if (mr_compare(t,n)==0)
{
printf("\ndegenerate case");
break;
}
printf("\nfactors are\n");
if (isprime(t)) printf("prime factor ");
else printf("composite factor ");
cotnum(t,stdout);
divide(n,t,n);
if (isprime(n)) printf("prime factor ");
else printf("composite factor ");
cotnum(n,stdout);
return 0;
}
}
if (nt>=NTRYS) break;
printf("\ntrying again\n");
}
printf("\nfailed to factor\n");
return 0;
}