KGC_TEST/KGC/miracl/source/brent.cpp

87 lines
2.0 KiB
C++

/*
* Program to factor big numbers using Brent-Pollard method.
* See "An Improved Monte Carlo Factorization Algorithm"
* by Richard Brent in BIT Vol. 20 1980 pp 176-184
*
* Requires: big.cpp zzn.cpp
*/
#include <iostream>
#include <iomanip>
#include "zzn.h"
using namespace std;
#define mr_min(a,b) ((a) < (b)? (a) : (b))
#ifndef MR_NOFULLWIDTH
Miracl precision(50,0);
#else
Miracl precision(50,MAXBASE);
#endif
int main()
{ /* factoring program using Brents method */
long k,r,i,m,iter;
Big n,z;
ZZn x,y,q,ys;
cout << "input number to be factored\n";
cin >> n;
if (prime(n))
{
cout << "this number is prime!\n";
return 0;
}
m=10L;
r=1L;
iter=0L;
z=0;
do
{
modulo(n); /* ZZn arithmetic done mod n */
y=z; /* convert back to ZZn (n has changed!) */
/* note:- a change of modulus is tricky for
for n-residue representation used in Montgomery
arithmetic */
cout << "iterations=" << setw(5) << iter;
q=1;
do
{
x=y;
for (i=1L;i<=r;i++) y=(y*y+3);
k=0;
do
{
iter++;
if (iter%10==0) cout << "\b\b\b\b\b" << setw(5) << iter << flush;
ys=y;
for (i=1L;i<=mr_min(m,r-k);i++)
{
y=(y*y+3);
q=((y-x)*q);
}
z=gcd(q,n);
k+=m;
} while (k<r && z==1);
r*=2;
} while (z==1);
if (z==n) do
{ /* back-track */
ys=(ys*ys+3);
z=gcd(ys-x,n);
} while (z==1);
if (!prime(z))
cout << "\ncomposite factor ";
else cout << "\nprime factor ";
cout << z << endl;
if (z==n) return 0;
n/=z;
z=y; /* convert to Big */
} while (!prime(n));
cout << "prime factor ";
cout << n << endl;
return 0;
}