KGC_TEST/KGC/miracl/source/curve/pairing/gf2m12x.h

110 lines
3.7 KiB
C++

/*
* MIRACL C++ Headerfile GF2m12x.h
*
* AUTHOR : M. Scott
*
* PURPOSE : Definition of class GF2m12x - Arithmetic over the extension
* field GF(2^12m) - uses irreducible polynomial x^12+x^FA+x^FB+x^FC+1
*
* NOTE : The underlying field basis must be set by the modulo() routine
*
* WARNING: This class has been cobbled together for a specific use with
* the MIRACL library. It is not complete, and may not work in other
* applications
*
*/
#ifndef GF2m12x_H
#define GF2m12x_H
#include <iostream>
#include "gf2m.h"
// set field and irreducible polynomial, undefine FB and FC for trinomials
#define FM 12
#define FA 5
//#define FB 5
//#define FC 1
class GF2m12x
{
GF2m x[FM];
public:
GF2m12x() {for (int i=0;i<FM;i++) x[i]=0; }
GF2m12x(const GF2m12x & b) {for (int i=0;i<FM;i++) x[i]=b.x[i]; }
GF2m12x(int i) {x[0]=i; }
GF2m12x(const GF2m* a) {for (int i=0;i<FM;i++) x[i]=a[i];}
GF2m12x(const GF2m& a,const GF2m& b, const GF2m& c=0, const GF2m& d=0, const GF2m& e=0, const GF2m& f=0,
const GF2m& g=0, const GF2m& h=0, const GF2m& i=0, const GF2m& j=0, const GF2m& k=0, const GF2m& l=0)
{x[0]=a; x[1]=b; x[2]=c; x[3]=d; x[4]=e; x[5]=f; x[6]=g; x[7]=h; x[8]=i; x[9]=j; x[10]=k; x[11]=l;}
GF2m12x(const Big& a) {x[0]=(GF2m)a;}
void set(const GF2m* a) {for (int i=0;i<FM;i++) x[i]=a[i];}
void set(const GF2m& a) {x[0]=a; for (int i=1;i<FM;i++) x[i]=0; }
void set(const GF2m& a,const GF2m& b=0, const GF2m& c=0, const GF2m& d=0, const GF2m& e=0, const GF2m& f=0,
const GF2m& g=0, const GF2m& h=0, const GF2m& i=0, const GF2m& j=0, const GF2m& k=0, const GF2m& l=0)
{x[0]=a; x[1]=b; x[2]=c; x[3]=d; x[4]=e; x[5]=f; x[6]=g; x[7]=h; x[8]=i; x[9]=j; x[10]=k; x[11]=l;}
void invert();
void get(GF2m*);
void get(GF2m&);
void clear() {for (int i=0;i<FM;i++) x[i]=0; }
int degree();
BOOL iszero() const
{for (int i=0;i<FM;i++) if (!x[i].iszero()) return FALSE; return TRUE; }
BOOL isunity() const
{if (!x[0].isone()) return FALSE; for (int i=1;i<FM;i++) if (!x[i].iszero()) return FALSE; return TRUE; }
GF2m12x& powq();
GF2m12x& operator=(const GF2m12x& b)
{ for (int i=0;i<FM;i++) x[i]=b.x[i]; return *this; }
GF2m12x& operator=(const GF2m& b)
{ x[0]=b; for (int i=1;i<FM;i++) x[i]=0; return *this; }
GF2m12x& operator=(int b)
{ x[0]=b; for (int i=1;i<FM;i++) x[i]=0; return *this; }
GF2m12x& operator+=(const GF2m12x& b)
{ for (int i=0;i<FM;i++) x[i]+=b.x[i]; return *this; }
GF2m12x& operator+=(const GF2m& b)
{x[0]+=b; return *this; }
GF2m12x& operator*=(const GF2m12x&);
GF2m12x& operator*=(const GF2m&);
GF2m12x& operator/=(const GF2m12x&);
GF2m12x& operator/=(const GF2m&);
friend GF2m12x operator+(const GF2m12x&,const GF2m12x&);
friend GF2m12x operator+(const GF2m12x&,const GF2m&);
friend GF2m12x operator+(const GF2m&,const GF2m12x&);
friend GF2m12x operator*(const GF2m12x&,const GF2m12x&);
friend GF2m12x operator*(const GF2m12x&,const GF2m&);
friend GF2m12x operator*(const GF2m&,const GF2m12x&);
friend GF2m12x operator/(const GF2m12x&,const GF2m12x&);
friend BOOL operator==(const GF2m12x& a,const GF2m12x& b)
{ for (int i=0;i<FM;i++) if (a.x[i]!=b.x[i]) return FALSE; return TRUE; }
friend BOOL operator!=(const GF2m12x& a,const GF2m12x& b)
{ for (int i=0;i<FM;i++) if (a.x[i]==b.x[i]) return FALSE; return TRUE; }
friend GF2m12x pow(const GF2m12x&,const Big&);
friend GF2m12x randx12();
friend ostream& operator<<(ostream&,const GF2m12x&);
~GF2m12x() {} ;
};
extern GF2m12x randx12();
#endif