629 lines
12 KiB
C++
629 lines
12 KiB
C++
/*
|
|
* C++ class to implement a bivariate polynomial type and to allow
|
|
* arithmetic on such polynomials whose coefficients are from
|
|
* the finite field mod p
|
|
*
|
|
* WARNING: This class has been cobbled together for a specific use with
|
|
* the MIRACL library. It is not complete, and may not work in other
|
|
* applications
|
|
*
|
|
* See Knuth The Art of Computer Programming Vol.2, Chapter 4.6
|
|
*/
|
|
|
|
#include "polyxy.h"
|
|
|
|
PolyXY::PolyXY(const ZZn& c, int p, int y)
|
|
{
|
|
start=NULL;
|
|
addterm(c,p,y);
|
|
}
|
|
|
|
PolyXY::PolyXY(int p)
|
|
{
|
|
start=NULL;
|
|
addterm((ZZn)p,0,0);
|
|
}
|
|
|
|
PolyXY::PolyXY(const PolyXY& p)
|
|
{
|
|
termXY *ptr=p.start;
|
|
termXY *pos=NULL;
|
|
start=NULL;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos=addterm(ptr->an,ptr->nx,ptr->ny,pos);
|
|
ptr=ptr->next;
|
|
}
|
|
}
|
|
|
|
PolyXY::PolyXY(const Poly& p)
|
|
{
|
|
term *ptr=p.start;
|
|
termXY *pos=NULL;
|
|
start=NULL;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos=addterm(ptr->an,ptr->n,0,pos);
|
|
ptr=ptr->next;
|
|
}
|
|
}
|
|
|
|
PolyXY::~PolyXY()
|
|
{
|
|
termXY *nx;
|
|
while (start!=NULL)
|
|
{
|
|
nx=start->next;
|
|
delete start;
|
|
start=nx;
|
|
}
|
|
}
|
|
|
|
ZZn PolyXY::coeff(int powx,int powy) const
|
|
{
|
|
ZZn c=0;
|
|
termXY *ptr=start;
|
|
while (ptr!=NULL)
|
|
{
|
|
if (ptr->nx==powx && ptr->ny==powy)
|
|
{
|
|
c=ptr->an;
|
|
return c;
|
|
}
|
|
ptr=ptr->next;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
PolyXY diff_dx(const PolyXY& f)
|
|
{
|
|
PolyXY r;
|
|
termXY *pos=NULL;
|
|
termXY *ptr=f.start;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos=r.addterm(ptr->an*ptr->nx,ptr->nx-1,ptr->ny,pos);
|
|
ptr=ptr->next;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
PolyXY diff_dy(const PolyXY& f)
|
|
{
|
|
PolyXY r;
|
|
termXY *pos=NULL;
|
|
termXY *ptr=f.start;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos=r.addterm(ptr->an*ptr->ny,ptr->nx,ptr->ny-1,pos);
|
|
ptr=ptr->next;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
Poly PolyXY::F(const ZZn& y)
|
|
{
|
|
Poly r;
|
|
term *pos=NULL;
|
|
int i,maxy=0;
|
|
ZZn f;
|
|
termXY *ptr=start;
|
|
|
|
while (ptr!=NULL)
|
|
{
|
|
if (ptr->ny>maxy) maxy=ptr->ny;
|
|
ptr=ptr->next;
|
|
}
|
|
|
|
// max y is max power of y present
|
|
|
|
ZZn *pw=new ZZn[maxy+1]; // powers of y
|
|
|
|
pw[0]=(ZZn)1;
|
|
for (i=1;i<=maxy;i++)
|
|
pw[i]=y*pw[i-1];
|
|
|
|
ptr=start;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos=r.addterm(ptr->an*pw[ptr->ny],ptr->nx,pos);
|
|
ptr=ptr->next;
|
|
}
|
|
|
|
delete [] pw;
|
|
|
|
return r;
|
|
}
|
|
|
|
ZZn PolyXY::F(const ZZn& x,const ZZn& y)
|
|
{
|
|
Poly r=F(y);
|
|
return r.F(x);
|
|
}
|
|
|
|
void PolyXY::clear()
|
|
{
|
|
termXY *ptr;
|
|
while (start!=NULL)
|
|
{
|
|
ptr=start->next;
|
|
delete start;
|
|
start=ptr;
|
|
}
|
|
|
|
}
|
|
|
|
PolyXY& PolyXY::operator=(const PolyXY& p)
|
|
{
|
|
termXY *ptr,*pos=NULL;
|
|
clear();
|
|
ptr=p.start;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos=addterm(ptr->an,ptr->nx,ptr->ny,pos);
|
|
ptr=ptr->next;
|
|
}
|
|
return *this;
|
|
|
|
}
|
|
|
|
termXY* PolyXY::addterm(const ZZn& a,int powx,int powy,termXY *pos)
|
|
{
|
|
termXY* newone;
|
|
termXY* ptr;
|
|
termXY *t,*iptr;
|
|
ptr=start;
|
|
iptr=NULL;
|
|
if (a.iszero()) return pos;
|
|
|
|
// quick scan through to detect if term exists already
|
|
// and to find insertion point
|
|
if (pos!=NULL) ptr=pos;
|
|
while (ptr!=NULL)
|
|
{
|
|
if (ptr->nx==powx && ptr->ny==powy)
|
|
{
|
|
ptr->an+=a;
|
|
if (ptr->an.iszero())
|
|
{ // delete term
|
|
if (ptr==start)
|
|
{ // delete first one
|
|
start=ptr->next;
|
|
delete ptr;
|
|
return start;
|
|
}
|
|
iptr=ptr;
|
|
ptr=start;
|
|
while (ptr->next!=iptr)ptr=ptr->next;
|
|
ptr->next=iptr->next;
|
|
delete iptr;
|
|
return ptr;
|
|
}
|
|
return ptr;
|
|
}
|
|
if (ptr->nx>powx) iptr=ptr;
|
|
if (ptr->nx==powx && ptr->ny>powy) iptr=ptr;
|
|
ptr=ptr->next;
|
|
}
|
|
newone=new termXY;
|
|
newone->next=NULL;
|
|
newone->an=a;
|
|
newone->nx=powx;
|
|
newone->ny=powy;
|
|
|
|
pos=newone;
|
|
if (start==NULL)
|
|
{
|
|
start=newone;
|
|
return pos;
|
|
}
|
|
|
|
// insert at the start
|
|
|
|
if (iptr==NULL)
|
|
{
|
|
t=start;
|
|
start=newone;
|
|
newone->next=t;
|
|
return pos;
|
|
}
|
|
|
|
// insert new term
|
|
|
|
t=iptr->next;
|
|
iptr->next=newone;
|
|
newone->next=t;
|
|
return pos;
|
|
}
|
|
|
|
ostream& operator<<(ostream& s,const PolyXY& p)
|
|
{
|
|
BOOL first=TRUE;
|
|
ZZn a;
|
|
termXY *ptr=p.start;
|
|
if (ptr==NULL)
|
|
{
|
|
s << "0";
|
|
return s;
|
|
}
|
|
while (ptr!=NULL)
|
|
{
|
|
a=ptr->an;
|
|
if ((Big)a<get_modulus()/2)
|
|
{
|
|
if (!first) s << " + ";
|
|
}
|
|
else
|
|
{
|
|
a=(-a);
|
|
s << " - ";
|
|
}
|
|
if (ptr->nx==0 && ptr->ny==0)
|
|
s << a;
|
|
else
|
|
{
|
|
if (a!=(ZZn)1) s << a << "*";
|
|
if (ptr->nx!=0)
|
|
{
|
|
s << "x";
|
|
if (ptr->nx!=1) s << "^" << ptr->nx;
|
|
}
|
|
if (ptr->ny!=0)
|
|
{
|
|
if (ptr->nx!=0) s << ".";
|
|
s << "y";
|
|
if (ptr->ny!=1) s << "^" << ptr->ny;
|
|
}
|
|
}
|
|
first=FALSE;
|
|
ptr=ptr->next;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
PolyXY& PolyXY::operator=(int p)
|
|
{
|
|
clear();
|
|
addterm((ZZn)p, 0, 0);
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
PolyXY operator*(Variable x,Variable y)
|
|
{
|
|
PolyXY t((ZZn)1,1,1);
|
|
return t;
|
|
}
|
|
*/
|
|
|
|
PolyXY powX(Variable x,int n)
|
|
{
|
|
PolyXY r((ZZn)1,n,0);
|
|
return r;
|
|
}
|
|
|
|
PolyXY powY(Variable y,int n)
|
|
{
|
|
PolyXY r((ZZn)1,0,n);
|
|
return r;
|
|
}
|
|
|
|
|
|
PolyXY operator%(const PolyXY& u,const PolyXY& v)
|
|
{
|
|
PolyXY r=u;
|
|
r%=v;
|
|
return r;
|
|
}
|
|
|
|
PolyXY& PolyXY::operator%=(const PolyXY& v)
|
|
{
|
|
ZZn m,pq;
|
|
int power, power2;
|
|
termXY *rptr=start;
|
|
termXY *vptr=v.start;
|
|
termXY *ptr,*pos;
|
|
if (degreeX(*this)<degreeX(v) && degreeY(*this)<degreeY(v)) return *this;
|
|
m=((ZZn)1/vptr->an);
|
|
|
|
while (rptr!=NULL && rptr->nx>=vptr->nx && rptr->ny>=vptr->ny)
|
|
{
|
|
pq=rptr->an*m;
|
|
power=rptr->nx-vptr->nx;
|
|
power2=rptr->ny-vptr->ny;
|
|
pos=NULL;
|
|
ptr=v.start;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos=addterm(ptr->an*pq,ptr->nx+power,ptr->ny+power2,pos);
|
|
ptr=ptr->next;
|
|
}
|
|
rptr=start;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
int degreeX(const PolyXY& p)
|
|
{
|
|
if (p.start==NULL) return 0;
|
|
else return p.start->nx;
|
|
}
|
|
|
|
int degreeY(const PolyXY& p)
|
|
{
|
|
termXY *ptr=p.start;
|
|
int maxdeg = 0;
|
|
|
|
if (p.start==NULL) return 0;
|
|
|
|
while (ptr!=NULL)
|
|
{
|
|
if(ptr->ny > maxdeg)
|
|
maxdeg = ptr->ny;
|
|
ptr = ptr->next;
|
|
}
|
|
return maxdeg;
|
|
}
|
|
|
|
BOOL iszero(const PolyXY& p)
|
|
{
|
|
if (degreeX(p)==0 && degreeY(p)==0 && (p.coeff(0,0)==0)) return TRUE;
|
|
else return FALSE;
|
|
}
|
|
|
|
PolyXY operator+(const PolyXY& a,const PolyXY& b)
|
|
{
|
|
PolyXY sum;
|
|
sum=a;
|
|
sum+=b;
|
|
return sum;
|
|
}
|
|
|
|
PolyXY operator+(const PolyXY& a,const ZZn& b)
|
|
{
|
|
PolyXY sum=a;
|
|
sum.addterm(b,0,0);
|
|
return sum;
|
|
}
|
|
|
|
PolyXY operator-(const PolyXY& a,const PolyXY& b)
|
|
{
|
|
PolyXY sum;
|
|
sum=a;
|
|
sum-=b;
|
|
return sum;
|
|
}
|
|
|
|
PolyXY& PolyXY::operator+=(const PolyXY& p)
|
|
{
|
|
termXY *ptr,*pos=NULL;
|
|
ptr=p.start;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos=addterm(ptr->an,ptr->nx,ptr->ny,pos);
|
|
ptr=ptr->next;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
PolyXY& PolyXY::operator-=(const PolyXY& p)
|
|
{
|
|
termXY *ptr,*pos=NULL;
|
|
ptr=p.start;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos=addterm(-(ptr->an),ptr->nx,ptr->ny,pos);
|
|
ptr=ptr->next;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
PolyXY& PolyXY::operator*=(const ZZn& x)
|
|
{
|
|
termXY *ptr=start;
|
|
while (ptr!=NULL)
|
|
{
|
|
ptr->an*=x;
|
|
ptr=ptr->next;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
BOOL operator==(const PolyXY& a,const PolyXY& b)
|
|
{
|
|
PolyXY diff=a-b;
|
|
if (iszero(diff)) return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
PolyXY operator*(const PolyXY &p,const ZZn& z)
|
|
{
|
|
PolyXY r=p;
|
|
r*=z;
|
|
return r;
|
|
}
|
|
|
|
BOOL isone(const PolyXY& p)
|
|
{
|
|
if (degreeX(p)==0 && degreeY(p)==0 && p.coeff(0,0)==1) return TRUE;
|
|
else return FALSE;
|
|
}
|
|
|
|
/*
|
|
* This function is only meant to be called from compose. It puts in a value
|
|
* for y, and then merges it with the x value
|
|
*/
|
|
PolyXY compoY(const PolyXY& q, const PolyXY& p)
|
|
{
|
|
PolyXY poly;
|
|
PolyXY temp(p);
|
|
Variable x,y;
|
|
termXY *qptr = q.start;
|
|
termXY *pos=NULL;
|
|
termXY *pptr = p.start;
|
|
int qdegree = 0;
|
|
poly.start = NULL;
|
|
|
|
while (qptr!=NULL) {
|
|
qdegree = qptr->ny;
|
|
// Multiply out y term
|
|
if(qdegree > 0) {
|
|
temp = p;
|
|
for(int i = 1; i < qdegree; i++)
|
|
temp = temp * p;// Multiply by x term if it exists
|
|
if(qptr->nx > 0)
|
|
temp = temp * powX(x,qptr->nx);
|
|
|
|
temp = temp * qptr->an;
|
|
poly += temp;
|
|
} else {
|
|
// Multiply by x term if it exists
|
|
if(qptr->nx > 0) {
|
|
// poly = poly + powX(x,qptr->nx);
|
|
temp = powX(x,qptr->nx);
|
|
temp = temp * qptr->an;
|
|
poly = poly + temp;
|
|
} else
|
|
poly = poly + qptr->an;
|
|
}
|
|
|
|
qptr = qptr->next;
|
|
pptr = p.start;
|
|
}
|
|
|
|
return poly;
|
|
}
|
|
|
|
|
|
PolyXY compose(const PolyXY& q,const PolyXY& p,const PolyXY& p2)
|
|
{ // compose polynomials
|
|
// assume P(x) = P3x^3 + P2x^2 + P1x^1 +P0
|
|
// Calculate P(Q(x)) = P3.(Q(x))^3 + P2.(Q(x))^2 ....
|
|
PolyXY poly;
|
|
PolyXY temp(p);
|
|
Variable x,y;
|
|
termXY *qptr = q.start;
|
|
termXY *pos=NULL;
|
|
termXY *pptr = p.start;
|
|
int qdegree = 0;
|
|
poly.start = NULL;
|
|
|
|
while (qptr!=NULL) {
|
|
qdegree = qptr->nx;
|
|
// Multiply out x term
|
|
if(qdegree > 0) {
|
|
temp = p;
|
|
for(int i = 1; i < qdegree; i++)
|
|
temp = temp * p;
|
|
|
|
// Multiply by y term if it exists
|
|
if(qptr->ny > 0)temp = temp * powY(y,qptr->ny);
|
|
|
|
temp = temp * qptr->an;
|
|
poly += temp;
|
|
} else {
|
|
// Multiply by y term if it exists
|
|
if(qptr->ny > 0) {
|
|
temp = powY(y,qptr->ny);
|
|
temp = temp * qptr->an;
|
|
poly = poly + temp;
|
|
// poly = poly + (qptr->an * powY(y,qptr->ny));
|
|
}
|
|
else
|
|
poly = poly + qptr->an;
|
|
}
|
|
|
|
qptr = qptr->next;
|
|
pptr = p.start;
|
|
}
|
|
|
|
// return poly;
|
|
|
|
PolyXY result = compoY(poly, p2);
|
|
return result;
|
|
}
|
|
|
|
|
|
PolyXY operator*(const PolyXY& a,const PolyXY& b)
|
|
{
|
|
int i,d,dega,degb,deg;
|
|
ZZn t;
|
|
PolyXY prod;
|
|
termXY *iptr,*pos;
|
|
termXY *ptr=b.start;
|
|
if (&a==&b)
|
|
{ // squaring - only diagonal terms count!
|
|
pos=NULL;
|
|
while (ptr!=NULL)
|
|
{ // diagonal terms
|
|
pos=prod.addterm(ptr->an*ptr->an,ptr->nx+ptr->nx,ptr->ny+ptr->ny,pos
|
|
);
|
|
ptr=ptr->next;
|
|
}
|
|
return prod;
|
|
}
|
|
|
|
while (ptr!=NULL) {
|
|
pos=NULL;
|
|
iptr=a.start;
|
|
while (iptr!=NULL)
|
|
{
|
|
pos=prod.addterm(ptr->an*iptr->an,ptr->nx+iptr->nx,ptr->ny+iptr->ny,
|
|
pos);
|
|
iptr=iptr->next;
|
|
}
|
|
ptr=ptr->next;
|
|
}
|
|
|
|
return prod;
|
|
}
|
|
|
|
// Convert a polyxy object to a poly object by just taking the
|
|
// "x" value
|
|
Poly PolyXY::convert_x() const
|
|
{
|
|
termXY *ptr=start;
|
|
term *pos=NULL;
|
|
Poly newpoly;
|
|
while (ptr!=NULL)
|
|
{
|
|
pos = newpoly.addterm(ptr->an,ptr->nx,pos);
|
|
ptr = ptr->next;
|
|
}
|
|
return newpoly;
|
|
}
|
|
|
|
// Convert a polyxy object to a poly object by just taking the
|
|
// "x" value when the corresponding "y" value is 0
|
|
Poly PolyXY::convert_x2() const
|
|
{
|
|
termXY *ptr=start;
|
|
term *pos=NULL;
|
|
Poly newpoly;
|
|
while (ptr!=NULL)
|
|
{
|
|
if(ptr->ny == 0)
|
|
pos = newpoly.addterm(ptr->an,ptr->nx,pos);
|
|
ptr = ptr->next;
|
|
}
|
|
return newpoly;
|
|
}
|
|
|
|
// Convert a polyxy object to a poly object by just taking the
|
|
// "x" value when the corresponding "y" value is greater than 0
|
|
Poly PolyXY::convert_x3() const
|
|
{
|
|
termXY *ptr=start;
|
|
term *pos=NULL;
|
|
Poly newpoly;
|
|
while (ptr!=NULL)
|
|
{
|
|
if(ptr->ny > 0)
|
|
pos = newpoly.addterm(ptr->an,ptr->nx,pos);
|
|
ptr = ptr->next;
|
|
}
|
|
return newpoly;
|
|
}
|
|
|