195 lines
5.7 KiB
C++
195 lines
5.7 KiB
C++
|
|
/***************************************************************************
|
|
*
|
|
Copyright 2013 CertiVox UK Ltd. *
|
|
*
|
|
This file is part of CertiVox MIRACL Crypto SDK. *
|
|
*
|
|
The CertiVox MIRACL Crypto SDK provides developers with an *
|
|
extensive and efficient set of cryptographic functions. *
|
|
For further information about its features and functionalities please *
|
|
refer to http://www.certivox.com *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is free software: you can *
|
|
redistribute it and/or modify it under the terms of the *
|
|
GNU Affero General Public License as published by the *
|
|
Free Software Foundation, either version 3 of the License, *
|
|
or (at your option) any later version. *
|
|
*
|
|
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
|
|
See the GNU Affero General Public License for more details. *
|
|
*
|
|
* You should have received a copy of the GNU Affero General Public *
|
|
License along with CertiVox MIRACL Crypto SDK. *
|
|
If not, see <http://www.gnu.org/licenses/>. *
|
|
*
|
|
You can be released from the requirements of the license by purchasing *
|
|
a commercial license. Buying such a license is mandatory as soon as you *
|
|
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
|
|
without disclosing the source code of your own applications, or shipping *
|
|
the CertiVox MIRACL Crypto SDK with a closed source product. *
|
|
*
|
|
***************************************************************************/
|
|
/*
|
|
*
|
|
* MIRACL C++ functions ecn.cpp
|
|
*
|
|
* AUTHOR : M. Scott
|
|
*
|
|
* PURPOSE : Implementation of class ECn functions using Montgomery
|
|
* representation
|
|
* NOTE : Must be used in conjunction with big.h and big.cpp
|
|
*/
|
|
|
|
#include "ecn.h"
|
|
|
|
int ECn::get(Big& x,Big& y) const
|
|
{return epoint_get(p,x.getbig(),y.getbig());}
|
|
int ECn::get(Big& x) const
|
|
{return epoint_get(p,x.getbig(),x.getbig());}
|
|
|
|
#ifndef MR_STATIC
|
|
void ECn::getx(Big &x) const
|
|
{epoint_getxyz(p,x.getbig(),NULL,NULL);}
|
|
void ECn::getxy(Big &x,Big &y) const
|
|
{epoint_getxyz(p,x.getbig(),y.getbig(),NULL);}
|
|
void ECn::getxyz(Big &x,Big &y, Big &z) const
|
|
{epoint_getxyz(p,x.getbig(),y.getbig(),z.getbig());}
|
|
#endif
|
|
|
|
// ecurve_add leaves some "goodies" in w6,w7 and w8
|
|
// Note if A=0 for the elliptic curve, ex1 doesn't return anything useful
|
|
// ex2=Z*Z, ex1=2Y^2, lam = line slope
|
|
|
|
int ECn::add(const ECn& b,big *lam,big *ex1,big *ex2) const
|
|
{
|
|
int r=ecurve_add(b.p,p); *lam=get_mip()->w8;
|
|
if (ex1!=NULL) *ex1=get_mip()->w7;
|
|
if (ex2!=NULL) *ex2=get_mip()->w6;
|
|
return r;
|
|
}
|
|
|
|
int ECn::sub(const ECn& b,big *lam,big *ex1,big *ex2) const
|
|
{
|
|
int r=ecurve_sub(b.p,p); *lam=get_mip()->w8;
|
|
if (ex1!=NULL) *ex1=get_mip()->w7;
|
|
if (ex2!=NULL) *ex2=get_mip()->w6;
|
|
return r;
|
|
}
|
|
|
|
BOOL ECn::iszero() const
|
|
{if (p->marker==MR_EPOINT_INFINITY) return TRUE; return FALSE;}
|
|
|
|
epoint * ECn::get_point() const
|
|
{ return p; }
|
|
|
|
ECn operator-(const ECn& e)
|
|
{ ECn t=e; epoint_negate(t.p); return t;}
|
|
|
|
ECn operator*(const Big& e,const ECn& b)
|
|
{
|
|
ECn t;
|
|
ecurve_mult(e.getbig(),b.p,t.p);
|
|
return t;
|
|
}
|
|
|
|
#ifndef MR_NO_ECC_MULTIADD
|
|
|
|
ECn mul(const Big& e1,const ECn& p1,const Big& e2,const ECn& p2)
|
|
{
|
|
ECn t;
|
|
ecurve_mult2(e1.getbig(),p1.get_point(),e2.getbig(),p2.get_point(),t.get_point());
|
|
return t;
|
|
}
|
|
|
|
#ifndef MR_STATIC
|
|
|
|
ECn mul(int n,const Big *y,ECn *x)
|
|
{
|
|
ECn w;
|
|
int i;
|
|
big *a=(big *)mr_alloc(n,sizeof(big));
|
|
epoint **b=(epoint **)mr_alloc(n,sizeof(epoint *));
|
|
for (i=0;i<n;i++)
|
|
{
|
|
a[i]=y[i].getbig();
|
|
b[i]=x[i].p;
|
|
}
|
|
ecurve_multn(n,a,b,w.p);
|
|
|
|
mr_free(b);
|
|
mr_free(a);
|
|
|
|
return w;
|
|
}
|
|
#ifndef MR_EDWARDS
|
|
void multi_norm(int m,ECn* e)
|
|
{
|
|
int i;
|
|
Big w[20];
|
|
big a[20];
|
|
epoint *b[20];
|
|
for (i=0;i<m;i++)
|
|
{
|
|
a[i]=w[i].getbig();
|
|
b[i]=e[i].p;
|
|
}
|
|
epoint_multi_norm(m,a,b);
|
|
}
|
|
|
|
void multi_add(int m,ECn *x, ECn *w)
|
|
{
|
|
int i;
|
|
epoint **xp=(epoint **)mr_alloc(m,sizeof(epoint *));
|
|
epoint **wp=(epoint **)mr_alloc(m,sizeof(epoint *));
|
|
for (i=0;i<m;i++)
|
|
{
|
|
xp[i]=x[i].p;
|
|
wp[i]=w[i].p;
|
|
}
|
|
ecurve_multi_add(m,xp,wp);
|
|
mr_free(wp);
|
|
mr_free(xp);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#ifndef MR_EDWARDS
|
|
void double_add(ECn& A,ECn& B,ECn& C,ECn& D,big& s1,big& s2)
|
|
{
|
|
ecurve_double_add(A.p,B.p,C.p,D.p,&s1,&s2);
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifndef MR_NO_STANDARD_IO
|
|
|
|
ostream& operator<<(ostream& s,const ECn& b)
|
|
{
|
|
Big x,y;
|
|
if (b.iszero())
|
|
s << "(Infinity)";
|
|
else
|
|
{
|
|
b.get(x,y);
|
|
s << "(" << x << "," << y << ")";
|
|
}
|
|
return s;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef MR_NOSUPPORT_COMPRESSION
|
|
#ifndef MR_NOTESTXONCURVE
|
|
|
|
|
|
BOOL is_on_curve(const Big& a)
|
|
{ return epoint_x(a.fn);}
|
|
|
|
#endif
|
|
#endif
|