KGC_TEST/KGC/miracl/source/ecn2_opt.c

2048 lines
47 KiB
C

/*
* MIRACL E(F_p^2) support functions
* mrecn2.c
*
*/
#include <stdlib.h>
#include "miracl.h"
#ifdef MR_STATIC
#include <string.h>
#endif
static inline void zzn2_div2_i(zzn2 *w)
{
moddiv2(w->a->w);
w->a->len=2;
moddiv2(w->b->w);
w->b->len=2;
}
static inline void zzn2_tim2_i(zzn2 *w)
{
#ifdef MR_COUNT_OPS
fpa+=2;
#endif
modtim2(w->a->w);
modtim2(w->b->w);
w->a->len=2;
w->b->len=2;
}
static inline void zzn2_tim3_i(zzn2 *w)
{
#ifdef MR_COUNT_OPS
fpa+=4;
#endif
modtim3(w->a->w);
modtim3(w->b->w);
w->a->len=2;
w->b->len=2;
}
static inline void zzn2_copy_i(zzn2 *x,zzn2 *w)
{
if (x==w) return;
w->a->len=x->a->len;
w->a->w[0]=x->a->w[0];
w->a->w[1]=x->a->w[1];
w->b->len=x->b->len;
w->b->w[0]=x->b->w[0];
w->b->w[1]=x->b->w[1];
}
static inline void zzn2_add_i(zzn2 *x,zzn2 *y,zzn2 *w)
{
#ifdef MR_COUNT_OPS
fpa+=2;
#endif
modadd(x->a->w,y->a->w,w->a->w);
modadd(x->b->w,y->b->w,w->b->w);
w->a->len=2;
w->b->len=2;
}
static inline void zzn2_sub_i(zzn2 *x,zzn2 *y,zzn2 *w)
{
#ifdef MR_COUNT_OPS
fpa+=2;
#endif
modsub(x->a->w,y->a->w,w->a->w);
modsub(x->b->w,y->b->w,w->b->w);
w->a->len=2;
w->b->len=2;
}
static inline void zzn2_timesi_i(zzn2 *u)
{
mr_small w1[2];
w1[0]=u->a->w[0];
w1[1]=u->a->w[1];
u->a->w[0]=u->b->w[0];
u->a->w[1]=u->b->w[1];
modneg(u->a->w);
u->b->w[0]=w1[0];
u->b->w[1]=w1[1];
}
static inline void zzn2_txx_i(zzn2 *u)
{
/* multiply w by t^2 where x^2-t is irreducible polynomial for ZZn4
for p=5 mod 8 t=sqrt(sqrt(-2)), qnr=-2
for p=3 mod 8 t=sqrt(1+sqrt(-1)), qnr=-1
for p=7 mod 8 and p=2,3 mod 5 t=sqrt(2+sqrt(-1)), qnr=-1 */
zzn2 t;
struct bigtype aa,bb;
big a,b;
mr_small w3[2],w4[2];
a=&aa;
b=&bb;
a->len=2;
b->len=2;
a->w=w3;
b->w=w4;
t.a=a;
t.b=b;
zzn2_copy_i(u,&t);
zzn2_timesi_i(u);
zzn2_add_i(u,&t,u);
zzn2_add_i(u,&t,u);
u->a->len=2;
u->b->len=2;
}
static inline void zzn2_pmul_i(int i,zzn2 *x)
{
modpmul(i,x->a->w);
modpmul(i,x->b->w);
}
static inline void zzn2_sqr_i(zzn2 *x,zzn2 *w)
{
static mr_small w1[2],w2[2];
#ifdef MR_COUNT_OPS
fpa+=3;
fpc+=2;
#endif
modadd(x->a->w,x->b->w,w1);
modsub(x->a->w,x->b->w,w2);
modmult(x->a->w,x->b->w,w->b->w);
modmult(w1,w2,w->a->w); // routine that calculates (a+b)(a-b) ??
modtim2(w->b->w);
w->a->len=2;
w->b->len=2;
}
static inline void zzn2_dblsub_i(zzn2 *x,zzn2 *y,zzn2 *w)
{
#ifdef MR_COUNT_OPS
fpa+=4;
#endif
moddblsub(w->a->w,x->a->w,y->a->w);
moddblsub(w->b->w,x->b->w,y->b->w);
w->a->len=2;
w->b->len=2;
}
static inline void zzn2_mul_i(zzn2 *x,zzn2 *y,zzn2 *w)
{
static mr_small w1[2],w2[2],w5[2];
#ifdef MR_COUNT_OPS
fpa+=5;
fpc+=3;
#endif
/*#pragma omp parallel sections
{
#pragma omp section */
modmult(x->a->w,y->a->w,w1);
/* #pragma omp section */
modmult(x->b->w,y->b->w,w2);
/*}*/
modadd(x->a->w,x->b->w,w5);
modadd(y->a->w,y->b->w,w->b->w);
modmult(w->b->w,w5,w->b->w);
moddblsub(w->b->w,w1,w2); /* w->b->w - w1 -w2 */
modsub(w1,w2,w->a->w);
w->a->len=2;
w->b->len=2;
}
void zzn2_inv_i(_MIPD_ zzn2 *w)
{
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return;
#ifdef MR_COUNT_OPS
fpc+=4;
fpa+=1;
#endif
MR_IN(163)
modsqr(w->a->w,mr_mip->w1->w);
modsqr(w->b->w,mr_mip->w2->w);
modadd(mr_mip->w1->w,mr_mip->w2->w,mr_mip->w1->w);
mr_mip->w1->len=2;
/* redc(_MIPP_ mr_mip->w1,mr_mip->w6); */
copy(mr_mip->w1,mr_mip->w6);
xgcd(_MIPP_ mr_mip->w6,mr_mip->modulus,mr_mip->w6,mr_mip->w6,mr_mip->w6);
/* nres(_MIPP_ mr_mip->w6,mr_mip->w6); */
modmult(w->a->w,mr_mip->w6->w,w->a->w);
modneg(mr_mip->w6->w);
modmult(w->b->w,mr_mip->w6->w,w->b->w);
MR_OUT
}
BOOL nres_sqroot(_MIPD_ big x,big w)
{ /* w=sqrt(x) mod p. This depends on p being prime! */
int i,t,js;
#ifdef MR_COUNT_OPS
fpc+=125;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return FALSE;
copy(x,w);
if (size(w)==0) return TRUE;
copy(w,mr_mip->w1);
for (i=0;i<25;i++)
{
modsqr(w->w,w->w);
modsqr(w->w,w->w);
modsqr(w->w,w->w);
modsqr(w->w,w->w);
modsqr(w->w,w->w);
}
w->len=2;
modsqr(w->w,mr_mip->w2->w);
mr_mip->w2->len=2;
if (mr_compare(mr_mip->w1,mr_mip->w2)!=0) {zero(w);return FALSE;}
return TRUE;
}
BOOL zzn2_sqrt(_MIPD_ zzn2 *u,zzn2 *w)
{ /* sqrt(a+ib) = sqrt(a+sqrt(a*a-n*b*b)/2)+ib/(2*sqrt(a+sqrt(a*a-n*b*b)/2))
where i*i=n */
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifdef MR_COUNT_OPS
fpc+=2;
fpa+=1;
#endif
if (mr_mip->ERNUM) return FALSE;
zzn2_copy(u,w);
if (zzn2_iszero(w)) return TRUE;
MR_IN(204)
modsqr(w->b->w,mr_mip->w7->w);
modsqr(w->a->w,mr_mip->w1->w);
modadd(mr_mip->w1->w,mr_mip->w7->w,mr_mip->w7->w);
mr_mip->w7->len=2;
// nres_modmult(_MIPP_ w->b,w->b,mr_mip->w7);
// nres_modmult(_MIPP_ w->a,w->a,mr_mip->w1);
// nres_modadd(_MIPP_ mr_mip->w7,mr_mip->w1,mr_mip->w7);
if (!nres_sqroot(_MIPP_ mr_mip->w7,mr_mip->w7)) /* s=w7 */
{
zzn2_zero(w);
MR_OUT
return FALSE;
}
#ifdef MR_COUNT_OPS
fpa+=1;
#endif
modadd(w->a->w,mr_mip->w7->w,mr_mip->w15->w);
moddiv2(mr_mip->w15->w);
mr_mip->w15->len=2;
// nres_modadd(_MIPP_ w->a,mr_mip->w7,mr_mip->w15);
// nres_div2(_MIPP_ mr_mip->w15,mr_mip->w15);
if (!nres_sqroot(_MIPP_ mr_mip->w15,mr_mip->w15))
{
#ifdef MR_COUNT_OPS
fpa+=1;
#endif
modsub(w->a->w,mr_mip->w7->w,mr_mip->w15->w);
moddiv2(mr_mip->w15->w);
mr_mip->w15->len=2;
// nres_modsub(_MIPP_ w->a,mr_mip->w7,mr_mip->w15);
// nres_div2(_MIPP_ mr_mip->w15,mr_mip->w15);
if (!nres_sqroot(_MIPP_ mr_mip->w15,mr_mip->w15))
{
zzn2_zero(w);
MR_OUT
return FALSE;
}
// else printf("BBBBBBBBBBBBBBBBBB\n");
}
// else printf("AAAAAAAAAAAAAAAAAAA\n");
#ifdef MR_COUNT_OPS
fpa+=1;
#endif
copy(mr_mip->w15,w->a);
modadd(mr_mip->w15->w,mr_mip->w15->w,mr_mip->w15->w);
nres_moddiv(_MIPP_ w->b,mr_mip->w15,w->b);
MR_OUT
return TRUE;
}
/*
BOOL zzn2_multi_inverse(_MIPD_ int m,zzn2 *x,zzn2 *w)
{
int i;
zzn2 t1,t2;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (m==0) return TRUE;
if (m<0) return FALSE;
MR_IN(214)
if (x==w)
{
mr_berror(_MIPP_ MR_ERR_BAD_PARAMETERS);
MR_OUT
return FALSE;
}
if (m==1)
{
zzn2_copy_i(&x[0],&w[0]);
zzn2_inv_i(_MIPP_ &w[0]);
MR_OUT
return TRUE;
}
zzn2_from_int(_MIPP_ 1,&w[0]);
zzn2_copy_i(&x[0],&w[1]);
for (i=2;i<m;i++)
{
if (zzn2_isunity(_MIPP_ &x[i-1]))
zzn2_copy_i(&w[i-1],&w[i]);
else
zzn2_mul_i(&w[i-1],&x[i-1],&w[i]);
}
t1.a=mr_mip->w8;
t1.b=mr_mip->w9;
t2.a=mr_mip->w10;
t2.b=mr_mip->w11;
zzn2_mul_i(&w[m-1],&x[m-1],&t1);
if (zzn2_iszero(&t1))
{
mr_berror(_MIPP_ MR_ERR_DIV_BY_ZERO);
MR_OUT
return FALSE;
}
zzn2_inv_i(_MIPP_ &t1);
zzn2_copy_i(&x[m-1],&t2);
zzn2_mul_i(&w[m-1],&t1,&w[m-1]);
for (i=m-2;;i--)
{
if (i==0)
{
zzn2_mul_i(&t2,&t1,&w[0]);
break;
}
zzn2_mul_i(&w[i],&t2,&w[i]);
zzn2_mul_i(&w[i],&t1,&w[i]);
if (!zzn2_isunity(_MIPP_ &x[i])) zzn2_mul_i(&t2,&x[i],&t2);
}
MR_OUT
return TRUE;
}
*/
BOOL ecn2_iszero(ecn2 *a)
{
if (a->marker==MR_EPOINT_INFINITY) return TRUE;
return FALSE;
}
void ecn2_copy(ecn2 *a,ecn2 *b)
{
zzn2_copy_i(&(a->x),&(b->x));
zzn2_copy_i(&(a->y),&(b->y));
#ifndef MR_AFFINE_ONLY
if (a->marker==MR_EPOINT_GENERAL) zzn2_copy_i(&(a->z),&(b->z));
#endif
b->marker=a->marker;
}
void ecn2_zero(ecn2 *a)
{
zzn2_zero(&(a->x)); zzn2_zero(&(a->y));
#ifndef MR_AFFINE_ONLY
if (a->marker==MR_EPOINT_GENERAL) zzn2_zero(&(a->z));
#endif
a->marker=MR_EPOINT_INFINITY;
}
BOOL ecn2_compare(_MIPD_ ecn2 *a,ecn2 *b)
{
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return FALSE;
MR_IN(193)
ecn2_norm(_MIPP_ a);
ecn2_norm(_MIPP_ b);
MR_OUT
if (zzn2_compare(&(a->x),&(b->x)) && zzn2_compare(&(a->y),&(b->y)) && a->marker==b->marker) return TRUE;
return FALSE;
}
void ecn2_norm(_MIPD_ ecn2 *a)
{
zzn2 t;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifndef MR_AFFINE_ONLY
if (mr_mip->ERNUM) return;
if (a->marker!=MR_EPOINT_GENERAL) return;
MR_IN(194)
zzn2_inv_i(_MIPP_ &(a->z));
t.a=mr_mip->w3;
t.b=mr_mip->w4;
zzn2_copy_i(&(a->z),&t);
zzn2_sqr_i( &(a->z),&(a->z));
zzn2_mul_i( &(a->x),&(a->z),&(a->x));
zzn2_mul_i( &(a->z),&t,&(a->z));
zzn2_mul_i( &(a->y),&(a->z),&(a->y));
zzn2_from_int(_MIPP_ 1,&(a->z));
a->marker=MR_EPOINT_NORMALIZED;
MR_OUT
#endif
}
void ecn2_get(_MIPD_ ecn2 *e,zzn2 *x,zzn2 *y,zzn2 *z)
{
zzn2_copy_i(&(e->x),x);
zzn2_copy_i(&(e->y),y);
#ifndef MR_AFFINE_ONLY
if (e->marker==MR_EPOINT_GENERAL) zzn2_copy_i(&(e->z),z);
else zzn2_from_zzn(mr_mip->one,z);
#endif
}
void ecn2_getxy(ecn2 *e,zzn2 *x,zzn2 *y)
{
zzn2_copy_i(&(e->x),x);
zzn2_copy_i(&(e->y),y);
}
void ecn2_getx(ecn2 *e,zzn2 *x)
{
zzn2_copy_i(&(e->x),x);
}
inline void zzn2_conj_i(zzn2 *x,zzn2 *w)
{
zzn2_copy_i(x,w);
modneg(w->b->w);
}
void ecn2_psi(_MIPD_ zzn2 *psi,ecn2 *P)
{
ecn2_norm(_MIPP_ P);
zzn2_conj_i(&(P->x),&(P->x));
zzn2_conj_i(&(P->y),&(P->y));
zzn2_mul_i(&(P->x),&psi[0],&(P->x));
zzn2_mul_i(&(P->y),&psi[1],&(P->y));
}
#ifndef MR_AFFINE_ONLY
void ecn2_getz(_MIPD_ ecn2 *e,zzn2 *z)
{
if (e->marker==MR_EPOINT_GENERAL) zzn2_copy_i(&(e->z),z);
else zzn2_from_zzn(mr_mip->one,z);
}
#endif
void ecn2_rhs(_MIPD_ zzn2 *x,zzn2 *rhs)
{ /* calculate RHS of elliptic curve equation */
BOOL twist;
zzn2 A,B;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return;
twist=mr_mip->TWIST;
MR_IN(202)
A.a=mr_mip->w10;
A.b=mr_mip->w11;
B.a=mr_mip->w12;
B.b=mr_mip->w13;
if (mr_abs(mr_mip->Asize)<MR_TOOBIG) zzn2_from_int(_MIPP_ mr_mip->Asize,&A);
else zzn2_from_zzn(mr_mip->A,&A);
if (mr_abs(mr_mip->Bsize)<MR_TOOBIG) zzn2_from_int(_MIPP_ mr_mip->Bsize,&B);
else zzn2_from_zzn(mr_mip->B,&B);
if (twist)
{
if (mr_mip->Asize==0 || mr_mip->Bsize==0)
{
if (mr_mip->Asize==0)
{
zzn2_txd(_MIPP_ &B);
}
if (mr_mip->Bsize==0)
{
zzn2_mul_i( &A,x,&B);
zzn2_txd(_MIPP_ &B);
}
zzn2_negate(_MIPP_ &B,&B);
}
else
{
zzn2_txx_i(&B);
zzn2_txx_i(&B);
zzn2_txx_i(&B);
zzn2_mul_i( &A,x,&A);
zzn2_txx_i(&A);
zzn2_txx_i(&A);
zzn2_add_i(&B,&A,&B);
}
}
else
{
zzn2_mul_i( &A,x,&A);
zzn2_add_i(&B,&A,&B);
}
zzn2_sqr_i( x,&A);
zzn2_mul_i( &A,x,&A);
zzn2_add_i(&B,&A,rhs);
MR_OUT
}
BOOL ecn2_set(_MIPD_ zzn2 *x,zzn2 *y,ecn2 *e)
{
zzn2 lhs,rhs;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return FALSE;
MR_IN(195)
lhs.a=mr_mip->w10;
lhs.b=mr_mip->w11;
rhs.a=mr_mip->w12;
rhs.b=mr_mip->w13;
ecn2_rhs(_MIPP_ x,&rhs);
zzn2_sqr_i( y,&lhs);
if (!zzn2_compare(&lhs,&rhs))
{
MR_OUT
return FALSE;
}
zzn2_copy_i(x,&(e->x));
zzn2_copy_i(y,&(e->y));
e->marker=MR_EPOINT_NORMALIZED;
MR_OUT
return TRUE;
}
#ifndef MR_NOSUPPORT_COMPRESSION
BOOL ecn2_setx(_MIPD_ zzn2 *x,ecn2 *e)
{
zzn2 rhs;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERNUM) return FALSE;
MR_IN(201)
rhs.a=mr_mip->w12;
rhs.b=mr_mip->w13;
ecn2_rhs(_MIPP_ x,&rhs);
if (!zzn2_iszero(&rhs))
{
if (!zzn2_sqrt(_MIPP_ &rhs,&rhs))
{
MR_OUT
return FALSE;
}
}
zzn2_copy_i(x,&(e->x));
zzn2_copy_i(&rhs,&(e->y));
e->marker=MR_EPOINT_NORMALIZED;
MR_OUT
return TRUE;
}
#endif
#ifndef MR_AFFINE_ONLY
void ecn2_setxyz(zzn2 *x,zzn2 *y,zzn2 *z,ecn2 *e)
{
zzn2_copy_i(x,&(e->x));
zzn2_copy_i(y,&(e->y));
zzn2_copy_i(z,&(e->z));
e->marker=MR_EPOINT_GENERAL;
}
#endif
void ecn2_negate(_MIPD_ ecn2 *u,ecn2 *w)
{
ecn2_copy(u,w);
if (!w->marker!=MR_EPOINT_INFINITY)
zzn2_negate(_MIPP_ &(w->y),&(w->y));
}
/*
BOOL ecn2_add2(_MIPD_ ecn2 *Q,ecn2 *P,zzn2 *lam,zzn2 *ex1)
{
BOOL Doubling;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
Doubling=ecn2_add3(_MIPP_ Q,P,lam,ex1,NULL);
return Doubling;
}
BOOL ecn2_add1(_MIPD_ ecn2 *Q,ecn2 *P,zzn2 *lam)
{
BOOL Doubling;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
Doubling=ecn2_add3(_MIPP_ Q,P,lam,NULL,NULL);
return Doubling;
}
*/
BOOL ecn2_sub(_MIPD_ ecn2 *Q,ecn2 *P)
{
BOOL Doubling;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
ecn2_negate(_MIPP_ Q,Q);
Doubling=ecn2_add(_MIPP_ Q,P);
ecn2_negate(_MIPP_ Q,Q);
return Doubling;
}
/*
static void zzn2_print(_MIPD_ char *label, zzn2 *x)
{
char s1[1024], s2[1024];
big a, b;
#ifdef MR_STATIC
char mem_big[MR_BIG_RESERVE(2)];
memset(mem_big, 0, MR_BIG_RESERVE(2));
a=mirvar_mem(_MIPP_ mem_big,0);
b=mirvar_mem(_MIPP_ mem_big,1);
#else
a = mirvar(_MIPP_ 0);
b = mirvar(_MIPP_ 0);
#endif
redc(_MIPP_ x->a, a); otstr(_MIPP_ a, s1);
redc(_MIPP_ x->b, b); otstr(_MIPP_ b, s2);
printf("%s: [%s,%s]\n", label, s1, s2);
#ifndef MR_STATIC
mr_free(a); mr_free(b);
#endif
}
static void nres_print(_MIPD_ char *label, big x)
{
char s[1024];
big a;
a = mirvar(_MIPP_ 0);
redc(_MIPP_ x, a);
otstr(_MIPP_ a, s);
printf("%s: %s\n", label, s);
mr_free(a);
}
*/
BOOL ecn2_add_sub(_MIPD_ ecn2 *P,ecn2 *Q,ecn2 *PP,ecn2 *PM)
{ /* PP=P+Q, PM=P-Q. Assumes P and Q are both normalized, and P!=Q */
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
zzn2 t1,t2,lam;
if (mr_mip->ERNUM) return FALSE;
MR_IN(211)
if (P->marker==MR_EPOINT_GENERAL || P->marker==MR_EPOINT_GENERAL)
{ /* Sorry, some restrictions.. */
mr_berror(_MIPP_ MR_ERR_BAD_PARAMETERS);
MR_OUT
return FALSE;
}
if (zzn2_compare(&(P->x),&(Q->x)))
{ /* P=Q or P=-Q - shouldn't happen */
ecn2_copy(P,PP);
ecn2_add(_MIPP_ Q,PP);
ecn2_copy(P,PM);
ecn2_sub(_MIPP_ Q,PM);
MR_OUT
return TRUE;
}
t1.a = mr_mip->w8;
t1.b = mr_mip->w9;
t2.a = mr_mip->w10;
t2.b = mr_mip->w11;
lam.a = mr_mip->w12;
lam.b = mr_mip->w13;
zzn2_copy_i(&(P->x),&t2);
zzn2_sub_i(&t2,&(Q->x),&t2);
zzn2_inv_i(_MIPP_ &t2); /* only one inverse required */
zzn2_add_i(&(P->x),&(Q->x),&(PP->x));
zzn2_copy_i(&(PP->x),&(PM->x));
zzn2_copy_i(&(P->y),&t1);
zzn2_sub_i(&t1,&(Q->y),&t1);
zzn2_copy_i(&t1,&lam);
zzn2_mul_i( &lam,&t2,&lam);
zzn2_copy_i(&lam,&t1);
zzn2_sqr_i( &t1,&t1);
zzn2_sub_i(&t1,&(PP->x),&(PP->x));
zzn2_copy_i(&(Q->x),&(PP->y));
zzn2_sub_i(&(PP->y),&(PP->x),&(PP->y));
zzn2_mul_i( &(PP->y),&lam,&(PP->y));
zzn2_sub_i(&(PP->y),&(Q->y),&(PP->y));
zzn2_copy_i(&(P->y),&t1);
zzn2_add_i(&t1,&(Q->y),&t1);
zzn2_copy_i(&t1,&lam);
zzn2_mul_i( &lam,&t2,&lam);
zzn2_copy_i(&lam,&t1);
zzn2_sqr_i( &t1,&t1);
zzn2_sub_i(&t1,&(PM->x),&(PM->x));
zzn2_copy_i(&(Q->x),&(PM->y));
zzn2_sub_i(&(PM->y),&(PM->x),&(PM->y));
zzn2_mul_i( &(PM->y),&lam,&(PM->y));
zzn2_add_i(&(PM->y),&(Q->y),&(PM->y));
PP->marker=MR_EPOINT_NORMALIZED;
PM->marker=MR_EPOINT_NORMALIZED;
MR_OUT
return TRUE;
}
BOOL ecn2_add(_MIPD_ ecn2 *Q,ecn2 *P)
{ /* P+=Q */
BOOL Doubling=FALSE;
BOOL twist;
int iA;
zzn2 t1,t2,t3,lam;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
t1.a = mr_mip->w8;
t1.b = mr_mip->w9;
t2.a = mr_mip->w10;
t2.b = mr_mip->w11;
t3.a = mr_mip->w12;
t3.b = mr_mip->w13;
lam.a = mr_mip->w14;
lam.b = mr_mip->w15;
twist=mr_mip->TWIST;
if (mr_mip->ERNUM) return FALSE;
if (P->marker==MR_EPOINT_INFINITY)
{
ecn2_copy(Q,P);
return Doubling;
}
if (Q->marker==MR_EPOINT_INFINITY) return Doubling;
MR_IN(205)
if (Q!=P && Q->marker==MR_EPOINT_GENERAL)
{ /* Sorry, this code is optimized for mixed addition only */
mr_berror(_MIPP_ MR_ERR_BAD_PARAMETERS);
MR_OUT
return Doubling;
}
#ifndef MR_AFFINE_ONLY
if (mr_mip->coord==MR_AFFINE)
{
#endif
if (!zzn2_compare(&(P->x),&(Q->x)))
{
zzn2_copy_i(&(P->y),&t1);
zzn2_sub_i(&t1,&(Q->y),&t1);
zzn2_copy_i(&(P->x),&t2);
zzn2_sub_i(&t2,&(Q->x),&t2);
zzn2_copy_i(&t1,&lam);
zzn2_inv_i(_MIPP_ &t2);
zzn2_mul_i( &lam,&t2,&lam);
zzn2_add_i(&(P->x),&(Q->x),&(P->x));
zzn2_copy_i(&lam,&t1);
zzn2_sqr_i( &t1,&t1);
zzn2_sub_i(&t1,&(P->x),&(P->x));
zzn2_copy_i(&(Q->x),&(P->y));
zzn2_sub_i(&(P->y),&(P->x),&(P->y));
zzn2_mul_i( &(P->y),&lam,&(P->y));
zzn2_sub_i(&(P->y),&(Q->y),&(P->y));
}
else
{
if (!zzn2_compare(&(P->y),&(Q->y)) || zzn2_iszero(&(P->y)))
{
ecn2_zero(P);
zzn2_from_int(_MIPP_ 1,&lam);
MR_OUT
return Doubling;
}
zzn2_copy_i(&(P->x),&t1);
zzn2_copy_i(&(P->x),&t2);
zzn2_copy_i(&(P->x),&lam);
zzn2_sqr_i( &lam,&lam);
zzn2_copy_i(&lam,&t3);
zzn2_tim2_i(&t3);
zzn2_add_i(&lam,&t3,&lam);
if (mr_abs(mr_mip->Asize)<MR_TOOBIG) zzn2_from_int(_MIPP_ mr_mip->Asize,&t3);
else zzn2_from_zzn(mr_mip->A,&t3);
if (twist)
{
zzn2_txx_i(&t3);
zzn2_txx_i(&t3);
}
zzn2_add_i(&lam,&t3,&lam);
zzn2_copy_i(&(P->y),&t3);
zzn2_tim2_i(&t3);
zzn2_inv_i(_MIPP_ &t3);
zzn2_mul_i( &lam,&t3,&lam);
zzn2_add_i(&t2,&(P->x),&t2);
zzn2_copy_i(&lam,&(P->x));
zzn2_sqr_i( &(P->x),&(P->x));
zzn2_sub_i(&(P->x),&t2,&(P->x));
zzn2_sub_i(&t1,&(P->x),&t1);
zzn2_mul_i( &t1,&lam,&t1);
zzn2_sub_i(&t1,&(P->y),&(P->y));
}
#ifndef MR_AFFINE_ONLY
zzn2_from_int(_MIPP_ 1,&(P->z));
#endif
P->marker=MR_EPOINT_NORMALIZED;
MR_OUT
return Doubling;
#ifndef MR_AFFINE_ONLY
}
if (Q==P) Doubling=TRUE;
if (!Doubling)
{
if (P->marker!=MR_EPOINT_NORMALIZED)
{
zzn2_sqr_i(&(P->z),&t1);
zzn2_mul_i(&t1,&(P->z),&t2);
zzn2_mul_i(&t1,&(Q->x),&t1);
zzn2_mul_i(&t2,&(Q->y),&t2);
// zzn2_sqr_i( &(P->z),&t1); /* 1S */
// zzn2_mul_i( &t3,&t1,&t3); /* 1M */
// zzn2_mul_i( &t1,&(P->z),&t1); /* 1M */
// zzn2_mul_i( &Yzzz,&t1,&Yzzz); /* 1M */
}
else
{
zzn2_copy(&(Q->x),&t1);
zzn2_copy(&(Q->y),&t2);
}
if (zzn2_compare(&t1,&(P->x))) /*?*/
{
if (!zzn2_compare(&t2,&(P->y)) || zzn2_iszero(&(P->y)))
{
ecn2_zero(P);
zzn2_from_int(_MIPP_ 1,&lam);
MR_OUT
return Doubling;
}
else Doubling=TRUE;
}
}
if (!Doubling)
{ /* Addition */
zzn2_sub_i(&t1,&(P->x),&t1);
zzn2_sub_i(&t2,&(P->y),&t2);
if (P->marker==MR_EPOINT_NORMALIZED) zzn2_copy_i(&t1,&(P->z));
else zzn2_mul_i(&(P->z),&t1,&(P->z));
zzn2_sqr_i(&t1,&t3);
zzn2_mul_i(&t3,&t1,&lam);
zzn2_mul_i(&t3,&(P->x),&t3);
zzn2_copy_i(&t3,&t1);
zzn2_tim2_i(&t1);
zzn2_sqr_i(&t2,&(P->x));
zzn2_dblsub_i(&t1,&lam,&(P->x));
zzn2_sub_i(&t3,&(P->x),&t3);
zzn2_mul_i(&t3,&t2,&t3);
zzn2_mul_i(&lam,&(P->y),&lam);
zzn2_sub_i(&t3,&lam,&(P->y));
}
else
{ /* doubling */
if (P->marker==MR_EPOINT_NORMALIZED) zzn2_from_int(_MIPP_ 1,&t1);
else zzn2_sqr_i(&(P->z),&t1);
if (twist) zzn2_txx_i(&t1);
zzn2_sub_i(&(P->x),&t1,&t2);
zzn2_add_i(&t1,&(P->x),&t1);
zzn2_mul_i(&t2,&t1,&t2);
zzn2_tim3_i(&t2);
zzn2_tim2_i(&(P->y));
if (P->marker==MR_EPOINT_NORMALIZED) zzn2_copy_i(&(P->y),&(P->z));
else zzn2_mul_i(&(P->z),&(P->y),&(P->z));
zzn2_sqr_i(&(P->y),&(P->y));
zzn2_mul_i(&(P->y),&(P->x),&t3);
zzn2_sqr_i(&(P->y),&(P->y));
zzn2_div2_i(&(P->y));
zzn2_sqr_i(&t2,&(P->x));
zzn2_copy_i(&t3,&t1);
zzn2_tim2_i(&t1);
zzn2_sub_i(&(P->x),&t1,&(P->x));
zzn2_sub_i(&t3,&(P->x),&t1);
zzn2_mul_i(&t1,&t2,&t1);
zzn2_sub_i(&t1,&(P->y),&(P->y));
}
P->marker=MR_EPOINT_GENERAL;
MR_OUT
return Doubling;
#endif
}
static int calc_n(int w)
{ /* number of precomputed values needed for given window size */
if (w==3) return 3;
if (w==4) return 5;
if (w==5) return 11;
if (w==6) return 41;
return 0;
}
/* Dahmen, Okeya and Schepers "Affine Precomputation with Sole Inversion in Elliptic Curve Cryptography" */
/* Precomputes table into T. Assumes first P has been copied to P[0], then calculates 3P, 5P, 7P etc. into T */
#define MR_DOS_2 (14+4*MR_STR_SZ_2P)
static void ecn2_dos(_MIPD_ int win,ecn2 *PT)
{
BOOL twist;
int i,j,sz;
zzn2 A,B,C,D,E,T,W,d[MR_STR_SZ_2P],e[MR_STR_SZ_2P];
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifndef MR_STATIC
char *mem = memalloc(_MIPP_ MR_DOS_2);
#else
char mem[MR_BIG_RESERVE(MR_DOS_2)];
memset(mem, 0, MR_BIG_RESERVE(MR_DOS_2));
#endif
twist=mr_mip->TWIST;
j=0;
sz=calc_n(win);
A.a= mirvar_mem(_MIPP_ mem, j++);
A.b= mirvar_mem(_MIPP_ mem, j++);
B.a= mirvar_mem(_MIPP_ mem, j++);
B.b= mirvar_mem(_MIPP_ mem, j++);
C.a= mirvar_mem(_MIPP_ mem, j++);
C.b= mirvar_mem(_MIPP_ mem, j++);
D.a= mirvar_mem(_MIPP_ mem, j++);
D.b= mirvar_mem(_MIPP_ mem, j++);
E.a= mirvar_mem(_MIPP_ mem, j++);
E.b= mirvar_mem(_MIPP_ mem, j++);
T.a= mirvar_mem(_MIPP_ mem, j++);
T.b= mirvar_mem(_MIPP_ mem, j++);
W.a= mirvar_mem(_MIPP_ mem, j++);
W.b= mirvar_mem(_MIPP_ mem, j++);
for (i=0;i<sz;i++)
{
d[i].a= mirvar_mem(_MIPP_ mem, j++);
d[i].b= mirvar_mem(_MIPP_ mem, j++);
e[i].a= mirvar_mem(_MIPP_ mem, j++);
e[i].b= mirvar_mem(_MIPP_ mem, j++);
}
zzn2_add_i(&(PT[0].y),&(PT[0].y),&d[0]); /* 1. d_0=2.y */
zzn2_sqr_i(&d[0],&C); /* 2. C=d_0^2 */
zzn2_sqr_i(&(PT[0].x),&T);
zzn2_add_i(&T,&T,&A);
zzn2_add_i(&T,&A,&T);
if (mr_abs(mr_mip->Asize)<MR_TOOBIG) zzn2_from_int(_MIPP_ mr_mip->Asize,&A);
else zzn2_from_zzn(mr_mip->A,&A);
if (twist)
{
zzn2_txx_i(&A);
zzn2_txx_i(&A);
}
zzn2_add_i(&A,&T,&A); /* 3. A=3x^2+a */
zzn2_copy_i(&A,&W);
zzn2_add_i(&C,&C,&B);
zzn2_add_i(&B,&C,&B);
zzn2_mul_i(&B,&(PT[0].x),&B); /* 4. B=3C.x */
zzn2_sqr_i(&A,&d[1]);
zzn2_sub_i(&d[1],&B,&d[1]); /* 5. d_1=A^2-B */
zzn2_sqr_i(&d[1],&E); /* 6. E=d_1^2 */
zzn2_mul_i(&B,&E,&B); /* 7. B=E.B */
zzn2_sqr_i(&C,&C); /* 8. C=C^2 */
zzn2_mul_i(&E,&d[1],&D); /* 9. D=E.d_1 */
zzn2_mul_i(&A,&d[1],&A);
zzn2_add_i(&A,&C,&A);
zzn2_negate(_MIPP_ &A,&A); /* 10. A=-d_1*A-C */
zzn2_add_i(&D,&D,&T);
zzn2_sqr_i(&A,&d[2]);
zzn2_sub_i(&d[2],&T,&d[2]);
zzn2_sub_i(&d[2],&B,&d[2]); /* 11. d_2=A^2-2D-B */
if (sz>3)
{
zzn2_sqr_i(&d[2],&E); /* 12. E=d_2^2 */
zzn2_add_i(&T,&D,&T);
zzn2_add_i(&T,&B,&T);
zzn2_mul_i(&T,&E,&B); /* 13. B=E(B+3D) */
zzn2_add_i(&A,&A,&T);
zzn2_add_i(&C,&T,&C);
zzn2_mul_i(&C,&D,&C); /* 14. C=D(2A+C) */
zzn2_mul_i(&d[2],&E,&D); /* 15. D=E.d_2 */
zzn2_mul_i(&A,&d[2],&A);
zzn2_add_i(&A,&C,&A);
zzn2_negate(_MIPP_ &A,&A); /* 16. A=-d_2*A-C */
zzn2_sqr_i(&A,&d[3]);
zzn2_sub_i(&d[3],&D,&d[3]);
zzn2_sub_i(&d[3],&B,&d[3]); /* 17. d_3=A^2-D-B */
for (i=4;i<sz;i++)
{
zzn2_sqr_i(&d[i-1],&E); /* 19. E=d(i-1)^2 */
zzn2_mul_i(&B,&E,&B); /* 20. B=E.B */
zzn2_mul_i(&C,&D,&C); /* 21. C=D.C */
zzn2_mul_i(&E,&d[i-1],&D); /* 22. D=E.d(i-1) */
zzn2_mul_i(&A,&d[i-1],&A);
zzn2_add_i(&A,&C,&A);
zzn2_negate(_MIPP_ &A,&A); /* 23. A=-d(i-1)*A-C */
zzn2_sqr_i(&A,&d[i]);
zzn2_sub_i(&d[i],&D,&d[i]);
zzn2_sub_i(&d[i],&B,&d[i]); /* 24. d(i)=A^2-D-B */
}
}
zzn2_copy_i(&d[0],&e[0]);
for (i=1;i<sz;i++)
zzn2_mul_i(&e[i-1],&d[i],&e[i]);
zzn2_copy_i(&e[sz-1],&A);
zzn2_inv_i(_MIPP_ &A);
for (i=sz-1;i>0;i--)
{
zzn2_copy_i(&d[i],&B);
zzn2_mul_i(&e[i-1],&A,&d[i]);
zzn2_mul_i(&A,&B,&A);
}
zzn2_copy_i(&A,&d[0]);
for (i=1;i<sz;i++)
{
zzn2_sqr_i(&e[i-1],&T);
zzn2_mul_i(&d[i],&T,&d[i]); /** */
}
zzn2_mul_i(&W,&d[0],&W);
zzn2_sqr_i(&W,&A);
zzn2_sub_i(&A,&(PT[0].x),&A);
zzn2_sub_i(&A,&(PT[0].x),&A);
zzn2_sub_i(&(PT[0].x),&A,&B);
zzn2_mul_i(&B,&W,&B);
zzn2_sub_i(&B,&(PT[0].y),&B);
zzn2_sub_i(&B,&(PT[0].y),&T);
zzn2_mul_i(&T,&d[1],&T);
zzn2_sqr_i(&T,&(PT[1].x));
zzn2_sub_i(&(PT[1].x),&A,&(PT[1].x));
zzn2_sub_i(&(PT[1].x),&(PT[0].x),&(PT[1].x));
zzn2_sub_i(&A,&(PT[1].x),&(PT[1].y));
zzn2_mul_i(&(PT[1].y),&T,&(PT[1].y));
zzn2_sub_i(&(PT[1].y),&B,&(PT[1].y));
for (i=2;i<sz;i++)
{
zzn2_sub_i(&(PT[i-1].y),&B,&T);
zzn2_mul_i(&T,&d[i],&T);
zzn2_sqr_i(&T,&(PT[i].x));
zzn2_sub_i(&(PT[i].x),&A,&(PT[i].x));
zzn2_sub_i(&(PT[i].x),&(PT[i-1].x),&(PT[i].x));
zzn2_sub_i(&A,&(PT[i].x),&(PT[i].y));
zzn2_mul_i(&(PT[i].y),&T,&(PT[i].y));
zzn2_sub_i(&(PT[i].y),&B,&(PT[i].y));
}
for (i=0;i<sz;i++) PT[i].marker=MR_EPOINT_NORMALIZED;
#ifndef MR_STATIC
memkill(_MIPP_ mem, MR_DOS_2);
#else
memset(mem, 0, MR_BIG_RESERVE(MR_DOS_2));
#endif
}
#ifndef MR_DOUBLE_BIG
#define MR_MUL_RESERVE (1+4*MR_STR_SZ_2)
#else
#define MR_MUL_RESERVE (2+4*MR_STR_SZ_2)
#endif
int ecn2_mul(_MIPD_ big k,ecn2 *P)
{
int i,j,nb,n,nbs,nzs,nadds;
big h;
ecn2 T[MR_STR_SZ_2];
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifndef MR_STATIC
char *mem = memalloc(_MIPP_ MR_MUL_RESERVE);
#else
char mem[MR_BIG_RESERVE(MR_MUL_RESERVE)];
memset(mem, 0, MR_BIG_RESERVE(MR_MUL_RESERVE));
#endif
j=0;
#ifndef MR_DOUBLE_BIG
h=mirvar_mem(_MIPP_ mem, j++);
#else
h=mirvar_mem(_MIPP_ mem, j); j+=2;
#endif
for (i=0;i<MR_STR_SZ_2;i++)
{
T[i].x.a= mirvar_mem(_MIPP_ mem, j++);
T[i].x.b= mirvar_mem(_MIPP_ mem, j++);
T[i].y.a= mirvar_mem(_MIPP_ mem, j++);
T[i].y.b= mirvar_mem(_MIPP_ mem, j++);
}
MR_IN(207)
ecn2_norm(_MIPP_ P);
nadds=0;
premult(_MIPP_ k,3,h);
ecn2_copy(P,&T[0]);
ecn2_dos(_MIPP_ MR_WIN_SZ_2,T);
nb=logb2(_MIPP_ h);
for (i=nb-2;i>=1;)
{
if (mr_mip->user!=NULL) (*mr_mip->user)();
n=mr_naf_window(_MIPP_ k,h,i,&nbs,&nzs,MR_WIN_SZ_2);
for (j=0;j<nbs;j++) ecn2_add(_MIPP_ P,P);
if (n>0) {nadds++; ecn2_add(_MIPP_ &T[n/2],P);}
if (n<0) {nadds++; ecn2_sub(_MIPP_ &T[(-n)/2],P);}
i-=nbs;
if (nzs)
{
for (j=0;j<nzs;j++) ecn2_add(_MIPP_ P,P);
i-=nzs;
}
}
ecn2_norm(_MIPP_ P);
MR_OUT
#ifndef MR_STATIC
memkill(_MIPP_ mem, MR_MUL_RESERVE);
#else
memset(mem, 0, MR_BIG_RESERVE(MR_MUL_RESERVE));
#endif
return nadds;
}
/* Double addition, using Joint Sparse Form */
/* R=aP+bQ */
#define MR_MUL2_JSF_RESERVE 20
int ecn2_mul2_jsf(_MIPD_ big a,ecn2 *P,big b,ecn2 *Q,ecn2 *R)
{
int e1,h1,e2,h2,bb,nadds;
ecn2 P1,P2,PS,PD;
big c,d,e,f;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifndef MR_STATIC
char *mem = memalloc(_MIPP_ MR_MUL2_JSF_RESERVE);
#else
char mem[MR_BIG_RESERVE(MR_MUL2_JSF_RESERVE)];
memset(mem, 0, MR_BIG_RESERVE(MR_MUL2_JSF_RESERVE));
#endif
c = mirvar_mem(_MIPP_ mem, 0);
d = mirvar_mem(_MIPP_ mem, 1);
e = mirvar_mem(_MIPP_ mem, 2);
f = mirvar_mem(_MIPP_ mem, 3);
P1.x.a= mirvar_mem(_MIPP_ mem, 4);
P1.x.b= mirvar_mem(_MIPP_ mem, 5);
P1.y.a= mirvar_mem(_MIPP_ mem, 6);
P1.y.b= mirvar_mem(_MIPP_ mem, 7);
P2.x.a= mirvar_mem(_MIPP_ mem, 8);
P2.x.b= mirvar_mem(_MIPP_ mem, 9);
P2.y.a= mirvar_mem(_MIPP_ mem, 10);
P2.y.b= mirvar_mem(_MIPP_ mem, 11);
PS.x.a= mirvar_mem(_MIPP_ mem, 12);
PS.x.b= mirvar_mem(_MIPP_ mem, 13);
PS.y.a= mirvar_mem(_MIPP_ mem, 14);
PS.y.b= mirvar_mem(_MIPP_ mem, 15);
PD.x.a= mirvar_mem(_MIPP_ mem, 16);
PD.x.b= mirvar_mem(_MIPP_ mem, 17);
PD.y.a= mirvar_mem(_MIPP_ mem, 18);
PD.y.b= mirvar_mem(_MIPP_ mem, 19);
MR_IN(206)
ecn2_norm(_MIPP_ Q);
ecn2_copy(Q,&P2);
copy(b,d);
if (size(d)<0)
{
negify(d,d);
ecn2_negate(_MIPP_ &P2,&P2);
}
ecn2_norm(_MIPP_ P);
ecn2_copy(P,&P1);
copy(a,c);
if (size(c)<0)
{
negify(c,c);
ecn2_negate(_MIPP_ &P1,&P1);
}
mr_jsf(_MIPP_ d,c,e,d,f,c); /* calculate joint sparse form */
if (mr_compare(e,f)>0) bb=logb2(_MIPP_ e)-1;
else bb=logb2(_MIPP_ f)-1;
ecn2_add_sub(_MIPP_ &P1,&P2,&PS,&PD);
ecn2_zero(R);
nadds=0;
while (bb>=0)
{ /* add/subtract method */
if (mr_mip->user!=NULL) (*mr_mip->user)();
ecn2_add(_MIPP_ R,R);
e1=h1=e2=h2=0;
if (mr_testbit(_MIPP_ d,bb)) e2=1;
if (mr_testbit(_MIPP_ e,bb)) h2=1;
if (mr_testbit(_MIPP_ c,bb)) e1=1;
if (mr_testbit(_MIPP_ f,bb)) h1=1;
if (e1!=h1)
{
if (e2==h2)
{
if (h1==1) {ecn2_add(_MIPP_ &P1,R); nadds++;}
else {ecn2_sub(_MIPP_ &P1,R); nadds++;}
}
else
{
if (h1==1)
{
if (h2==1) {ecn2_add(_MIPP_ &PS,R); nadds++;}
else {ecn2_add(_MIPP_ &PD,R); nadds++;}
}
else
{
if (h2==1) {ecn2_sub(_MIPP_ &PD,R); nadds++;}
else {ecn2_sub(_MIPP_ &PS,R); nadds++;}
}
}
}
else if (e2!=h2)
{
if (h2==1) {ecn2_add(_MIPP_ &P2,R); nadds++;}
else {ecn2_sub(_MIPP_ &P2,R); nadds++;}
}
bb-=1;
}
ecn2_norm(_MIPP_ R);
MR_OUT
#ifndef MR_STATIC
memkill(_MIPP_ mem, MR_MUL2_JSF_RESERVE);
#else
memset(mem, 0, MR_BIG_RESERVE(MR_MUL2_JSF_RESERVE));
#endif
return nadds;
}
/* General purpose multi-exponentiation engine, using inter-leaving algorithm. Calculate aP+bQ+cR+dS...
Inputs are divided into two groups of sizes wa<4 and wb<4. For the first group if the points are fixed the
first precomputed Table Ta[] may be taken from ROM. For the second group if the points are variable Tb[j] will
have to computed online. Each group has its own window size, wina (=5?) and winb (=4?) respectively. The values
a,b,c.. are provided in ma[] and mb[], and 3.a,3.b,3.c (as required by the NAF) are provided in ma3[] and
mb3[]. If only one group is required, set wb=0 and pass NULL pointers.
*/
int ecn2_muln_engine(_MIPD_ int wa,int wina,int wb,int winb,big *ma,big *ma3,big *mb,big *mb3,ecn2 *Ta,ecn2 *Tb,ecn2 *R)
{ /* general purpose interleaving algorithm engine for multi-exp */
int i,j,tba[4],pba[4],na[4],sa[4],tbb[4],pbb[4],nb[4],sb[4],nbits,nbs,nzs;
int sza,szb,nadds;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
sza=calc_n(wina);
szb=calc_n(winb);
ecn2_zero(R);
nbits=0;
for (i=0;i<wa;i++) {sa[i]=exsign(ma[i]); tba[i]=0; j=logb2(_MIPP_ ma3[i]); if (j>nbits) nbits=j; }
for (i=0;i<wb;i++) {sb[i]=exsign(mb[i]); tbb[i]=0; j=logb2(_MIPP_ mb3[i]); if (j>nbits) nbits=j; }
nadds=0;
for (i=nbits-1;i>=1;i--)
{
if (mr_mip->user!=NULL) (*mr_mip->user)();
if (R->marker!=MR_EPOINT_INFINITY) ecn2_add(_MIPP_ R,R);
for (j=0;j<wa;j++)
{ /* deal with the first group */
if (tba[j]==0)
{
na[j]=mr_naf_window(_MIPP_ ma[j],ma3[j],i,&nbs,&nzs,wina);
tba[j]=nbs+nzs;
pba[j]=nbs;
}
tba[j]--; pba[j]--;
if (pba[j]==0)
{
if (sa[j]==PLUS)
{
if (na[j]>0) {ecn2_add(_MIPP_ &Ta[j*sza+na[j]/2],R); nadds++;}
if (na[j]<0) {ecn2_sub(_MIPP_ &Ta[j*sza+(-na[j])/2],R); nadds++;}
}
else
{
if (na[j]>0) {ecn2_sub(_MIPP_ &Ta[j*sza+na[j]/2],R); nadds++;}
if (na[j]<0) {ecn2_add(_MIPP_ &Ta[j*sza+(-na[j])/2],R); nadds++;}
}
}
}
for (j=0;j<wb;j++)
{ /* deal with the second group */
if (tbb[j]==0)
{
nb[j]=mr_naf_window(_MIPP_ mb[j],mb3[j],i,&nbs,&nzs,winb);
tbb[j]=nbs+nzs;
pbb[j]=nbs;
}
tbb[j]--; pbb[j]--;
if (pbb[j]==0)
{
if (sb[j]==PLUS)
{
if (nb[j]>0) {ecn2_add(_MIPP_ &Tb[j*szb+nb[j]/2],R); nadds++;}
if (nb[j]<0) {ecn2_sub(_MIPP_ &Tb[j*szb+(-nb[j])/2],R); nadds++;}
}
else
{
if (nb[j]>0) {ecn2_sub(_MIPP_ &Tb[j*szb+nb[j]/2],R); nadds++;}
if (nb[j]<0) {ecn2_add(_MIPP_ &Tb[j*szb+(-nb[j])/2],R); nadds++;}
}
}
}
}
ecn2_norm(_MIPP_ R);
return nadds;
}
/* Routines to support Galbraith, Lin, Scott (GLS) method for ECC */
/* requires an endomorphism psi */
/* *********************** */
/* Precompute T - first half from i.P, second half from i.psi(P) */
void ecn2_precomp_gls(_MIPD_ int win,ecn2 *P,zzn2 *psi,ecn2 *T)
{
int i,j,sz;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
j=0;
sz=calc_n(win);
MR_IN(219)
ecn2_norm(_MIPP_ P);
ecn2_copy(P,&T[0]);
ecn2_dos(_MIPP_ win,T); /* precompute table */
for (i=sz;i<sz+sz;i++)
{
ecn2_copy(&T[i-sz],&T[i]);
ecn2_psi(_MIPP_ psi,&T[i]);
}
MR_OUT
}
/* Calculate a[0].P+a[1].psi(P) using interleaving method */
#define MR_MUL2_GLS_RESERVE (2+2*MR_STR_SZ_2*4)
int ecn2_mul2_gls(_MIPD_ big *a,ecn2 *P,zzn2 *psi,ecn2 *R)
{
int i,j,nadds;
ecn2 T[2*MR_STR_SZ_2];
big a3[2];
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifndef MR_STATIC
char *mem = memalloc(_MIPP_ MR_MUL2_GLS_RESERVE);
#else
char mem[MR_BIG_RESERVE(MR_MUL2_GLS_RESERVE)];
memset(mem, 0, MR_BIG_RESERVE(MR_MUL2_GLS_RESERVE));
#endif
for (j=i=0;i<2;i++)
a3[i]=mirvar_mem(_MIPP_ mem, j++);
for (i=0;i<2*MR_STR_SZ_2;i++)
{
T[i].x.a=mirvar_mem(_MIPP_ mem, j++);
T[i].x.b=mirvar_mem(_MIPP_ mem, j++);
T[i].y.a=mirvar_mem(_MIPP_ mem, j++);
T[i].y.b=mirvar_mem(_MIPP_ mem, j++);
T[i].marker=MR_EPOINT_INFINITY;
}
MR_IN(220)
ecn2_precomp_gls(_MIPP_ MR_WIN_SZ_2,P,psi,T);
for (i=0;i<2;i++) premult(_MIPP_ a[i],3,a3[i]); /* calculate for NAF */
nadds=ecn2_muln_engine(_MIPP_ 0,0,2,MR_WIN_SZ_2,NULL,NULL,a,a3,NULL,T,R);
ecn2_norm(_MIPP_ R);
MR_OUT
#ifndef MR_STATIC
memkill(_MIPP_ mem, MR_MUL2_GLS_RESERVE);
#else
memset(mem, 0, MR_BIG_RESERVE(MR_MUL2_GLS_RESERVE));
#endif
return nadds;
}
/* Calculates a[0]*P+a[1]*psi(P) + b[0]*Q+b[1]*psi(Q)
where P is fixed, and precomputations are already done off-line into FT
using ecn2_precomp_gls. Useful for signature verification */
#define MR_MUL4_GLS_V_RESERVE (4+2*MR_STR_SZ_2*4)
int ecn2_mul4_gls_v(_MIPD_ big *a,ecn2 *FT,big *b,ecn2 *Q,zzn2 *psi,ecn2 *R)
{
int i,j,nadds;
ecn2 VT[2*MR_STR_SZ_2];
big a3[2],b3[2];
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifndef MR_STATIC
char *mem = memalloc(_MIPP_ MR_MUL4_GLS_V_RESERVE);
#else
char mem[MR_BIG_RESERVE(MR_MUL4_GLS_V_RESERVE)];
memset(mem, 0, MR_BIG_RESERVE(MR_MUL4_GLS_V_RESERVE));
#endif
j=0;
for (i=0;i<2;i++)
{
a3[i]=mirvar_mem(_MIPP_ mem, j++);
b3[i]=mirvar_mem(_MIPP_ mem, j++);
}
for (i=0;i<2*MR_STR_SZ_2;i++)
{
VT[i].x.a=mirvar_mem(_MIPP_ mem, j++);
VT[i].x.b=mirvar_mem(_MIPP_ mem, j++);
VT[i].y.a=mirvar_mem(_MIPP_ mem, j++);
VT[i].y.b=mirvar_mem(_MIPP_ mem, j++);
VT[i].marker=MR_EPOINT_INFINITY;
}
MR_IN(217)
ecn2_precomp_gls(_MIPP_ MR_WIN_SZ_2,Q,psi,VT); /* precompute for the variable points */
for (i=0;i<2;i++)
{ /* needed for NAF */
premult(_MIPP_ a[i],3,a3[i]);
premult(_MIPP_ b[i],3,b3[i]);
}
nadds=ecn2_muln_engine(_MIPP_ 2,MR_WIN_SZ_2P,2,MR_WIN_SZ_2,a,a3,b,b3,FT,VT,R);
ecn2_norm(_MIPP_ R);
MR_OUT
#ifndef MR_STATIC
memkill(_MIPP_ mem, MR_MUL4_GLS_V_RESERVE);
#else
memset(mem, 0, MR_BIG_RESERVE(MR_MUL4_GLS_V_RESERVE));
#endif
return nadds;
}
/* Calculate a.P+b.Q using interleaving method. P is fixed and FT is precomputed from it */
void ecn2_precomp(_MIPD_ int win,ecn2 *P,ecn2 *T)
{
int sz;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
sz=calc_n(win);
MR_IN(216)
ecn2_norm(_MIPP_ P);
ecn2_copy(P,&T[0]);
ecn2_dos(_MIPP_ win,T);
MR_OUT
}
#ifndef MR_DOUBLE_BIG
#define MR_MUL2_RESERVE (2+2*MR_STR_SZ_2*4)
#else
#define MR_MUL2_RESERVE (4+2*MR_STR_SZ_2*4)
#endif
int ecn2_mul2(_MIPD_ big a,ecn2 *FT,big b,ecn2 *Q,ecn2 *R)
{
int i,j,nadds;
ecn2 T[2*MR_STR_SZ_2];
big a3,b3;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
#ifndef MR_STATIC
char *mem = memalloc(_MIPP_ MR_MUL2_RESERVE);
#else
char mem[MR_BIG_RESERVE(MR_MUL2_RESERVE)];
memset(mem, 0, MR_BIG_RESERVE(MR_MUL2_RESERVE));
#endif
j=0;
#ifndef MR_DOUBLE_BIG
a3=mirvar_mem(_MIPP_ mem, j++);
b3=mirvar_mem(_MIPP_ mem, j++);
#else
a3=mirvar_mem(_MIPP_ mem, j); j+=2;
b3=mirvar_mem(_MIPP_ mem, j); j+=2;
#endif
for (i=0;i<2*MR_STR_SZ_2;i++)
{
T[i].x.a=mirvar_mem(_MIPP_ mem, j++);
T[i].x.b=mirvar_mem(_MIPP_ mem, j++);
T[i].y.a=mirvar_mem(_MIPP_ mem, j++);
T[i].y.b=mirvar_mem(_MIPP_ mem, j++);
T[i].marker=MR_EPOINT_INFINITY;
}
MR_IN(218)
ecn2_precomp(_MIPP_ MR_WIN_SZ_2,Q,T);
premult(_MIPP_ a,3,a3);
premult(_MIPP_ b,3,b3);
nadds=ecn2_muln_engine(_MIPP_ 1,MR_WIN_SZ_2P,1,MR_WIN_SZ_2,&a,&a3,&b,&b3,FT,T,R);
ecn2_norm(_MIPP_ R);
MR_OUT
#ifndef MR_STATIC
memkill(_MIPP_ mem, MR_MUL2_RESERVE);
#else
memset(mem, 0, MR_BIG_RESERVE(MR_MUL2_RESERVE));
#endif
return nadds;
}
#ifndef MR_STATIC
BOOL ecn2_brick_init(_MIPD_ ebrick *B,zzn2 *x,zzn2 *y,big a,big b,big n,int window,int nb)
{ /* Uses Montgomery arithmetic internally *
* (x,y) is the fixed base *
* a,b and n are parameters and modulus of the curve *
* window is the window size in bits and *
* nb is the maximum number of bits in the multiplier */
int i,j,k,t,bp,len,bptr;
ecn2 *table;
ecn2 w;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (nb<2 || window<1 || window>nb || mr_mip->ERNUM) return FALSE;
t=MR_ROUNDUP(nb,window);
if (t<2) return FALSE;
MR_IN(221)
#ifndef MR_ALWAYS_BINARY
if (mr_mip->base != mr_mip->base2)
{
mr_berror(_MIPP_ MR_ERR_NOT_SUPPORTED);
MR_OUT
return FALSE;
}
#endif
B->window=window;
B->max=nb;
table=mr_alloc(_MIPP_ (1<<window),sizeof(ecn2));
if (table==NULL)
{
mr_berror(_MIPP_ MR_ERR_OUT_OF_MEMORY);
MR_OUT
return FALSE;
}
B->a=mirvar(_MIPP_ 0);
B->b=mirvar(_MIPP_ 0);
B->n=mirvar(_MIPP_ 0);
copy(a,B->a);
copy(b,B->b);
copy(n,B->n);
ecurve_init(_MIPP_ a,b,n,MR_AFFINE);
mr_mip->TWIST=TRUE;
w.x.a=mirvar(_MIPP_ 0);
w.x.b=mirvar(_MIPP_ 0);
w.y.a=mirvar(_MIPP_ 0);
w.y.b=mirvar(_MIPP_ 0);
w.marker=MR_EPOINT_INFINITY;
ecn2_set(_MIPP_ x,y,&w);
table[0].x.a=mirvar(_MIPP_ 0);
table[0].x.b=mirvar(_MIPP_ 0);
table[0].y.a=mirvar(_MIPP_ 0);
table[0].y.b=mirvar(_MIPP_ 0);
table[0].marker=MR_EPOINT_INFINITY;
table[1].x.a=mirvar(_MIPP_ 0);
table[1].x.b=mirvar(_MIPP_ 0);
table[1].y.a=mirvar(_MIPP_ 0);
table[1].y.b=mirvar(_MIPP_ 0);
table[1].marker=MR_EPOINT_INFINITY;
ecn2_copy(&w,&table[1]);
for (j=0;j<t;j++)
ecn2_add(_MIPP_ &w,&w);
k=1;
for (i=2;i<(1<<window);i++)
{
table[i].x.a=mirvar(_MIPP_ 0);
table[i].x.b=mirvar(_MIPP_ 0);
table[i].y.a=mirvar(_MIPP_ 0);
table[i].y.b=mirvar(_MIPP_ 0);
table[i].marker=MR_EPOINT_INFINITY;
if (i==(1<<k))
{
k++;
ecn2_copy(&w,&table[i]);
for (j=0;j<t;j++)
ecn2_add(_MIPP_ &w,&w);
continue;
}
bp=1;
for (j=0;j<k;j++)
{
if (i&bp)
ecn2_add(_MIPP_ &table[1<<j],&table[i]);
bp<<=1;
}
}
mr_free(w.x.a);
mr_free(w.x.b);
mr_free(w.y.a);
mr_free(w.y.b);
/* create the table */
len=n->len;
bptr=0;
B->table=mr_alloc(_MIPP_ 4*len*(1<<window),sizeof(mr_small));
for (i=0;i<(1<<window);i++)
{
for (j=0;j<len;j++) B->table[bptr++]=table[i].x.a->w[j];
for (j=0;j<len;j++) B->table[bptr++]=table[i].x.b->w[j];
for (j=0;j<len;j++) B->table[bptr++]=table[i].y.a->w[j];
for (j=0;j<len;j++) B->table[bptr++]=table[i].y.b->w[j];
mr_free(table[i].x.a);
mr_free(table[i].x.b);
mr_free(table[i].y.a);
mr_free(table[i].y.b);
}
mr_free(table);
MR_OUT
return TRUE;
}
void ecn2_brick_end(ebrick *B)
{
mirkill(B->n);
mirkill(B->b);
mirkill(B->a);
mr_free(B->table);
}
#else
/* use precomputated table in ROM */
void ecn2_brick_init(ebrick *B,const mr_small* rom,big a,big b,big n,int window,int nb)
{
B->table=rom;
B->a=a; /* just pass a pointer */
B->b=b;
B->n=n;
B->window=window; /* 2^4=16 stored values */
B->max=nb;
}
#endif
/*
void ecn2_mul_brick(_MIPD_ ebrick *B,big e,zzn2 *x,zzn2 *y)
{
int i,j,t,len,maxsize,promptr;
ecn2 w,z;
#ifdef MR_STATIC
char mem[MR_BIG_RESERVE(10)];
#else
char *mem;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (size(e)<0) mr_berror(_MIPP_ MR_ERR_NEG_POWER);
t=MR_ROUNDUP(B->max,B->window);
MR_IN(116)
#ifndef MR_ALWAYS_BINARY
if (mr_mip->base != mr_mip->base2)
{
mr_berror(_MIPP_ MR_ERR_NOT_SUPPORTED);
MR_OUT
return;
}
#endif
if (logb2(_MIPP_ e) > B->max)
{
mr_berror(_MIPP_ MR_ERR_EXP_TOO_BIG);
MR_OUT
return;
}
ecurve_init(_MIPP_ B->a,B->b,B->n,MR_BEST);
mr_mip->TWIST=TRUE;
#ifdef MR_STATIC
memset(mem,0,MR_BIG_RESERVE(10));
#else
mem=memalloc(_MIPP_ 10);
#endif
w.x.a=mirvar_mem(_MIPP_ mem, 0);
w.x.b=mirvar_mem(_MIPP_ mem, 1);
w.y.a=mirvar_mem(_MIPP_ mem, 2);
w.y.b=mirvar_mem(_MIPP_ mem, 3);
w.z.a=mirvar_mem(_MIPP_ mem, 4);
w.z.b=mirvar_mem(_MIPP_ mem, 5);
w.marker=MR_EPOINT_INFINITY;
z.x.a=mirvar_mem(_MIPP_ mem, 6);
z.x.b=mirvar_mem(_MIPP_ mem, 7);
z.y.a=mirvar_mem(_MIPP_ mem, 8);
z.y.b=mirvar_mem(_MIPP_ mem, 9);
z.marker=MR_EPOINT_INFINITY;
len=B->n->len;
maxsize=4*(1<<B->window)*len;
for (i=t-1;i>=0;i--)
{
j=recode(_MIPP_ e,t,B->window,i);
ecn2_add(_MIPP_ &w,&w);
if (j>0)
{
promptr=4*j*len;
init_big_from_rom(z.x.a,len,B->table,maxsize,&promptr);
init_big_from_rom(z.x.b,len,B->table,maxsize,&promptr);
init_big_from_rom(z.y.a,len,B->table,maxsize,&promptr);
init_big_from_rom(z.y.b,len,B->table,maxsize,&promptr);
z.marker=MR_EPOINT_NORMALIZED;
ecn2_add(_MIPP_ &z,&w);
}
}
ecn2_norm(_MIPP_ &w);
ecn2_getxy(&w,x,y);
#ifndef MR_STATIC
memkill(_MIPP_ mem,10);
#else
memset(mem,0,MR_BIG_RESERVE(10));
#endif
MR_OUT
}
*/
void ecn2_mul_brick_gls(_MIPD_ ebrick *B,big *e,zzn2 *psi,zzn2 *x,zzn2 *y)
{
int i,j,k,t,len,maxsize,promptr,se[2];
ecn2 w,z;
#ifdef MR_STATIC
char mem[MR_BIG_RESERVE(10)];
#else
char *mem;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
for (k=0;k<2;k++) se[k]=exsign(e[k]);
t=MR_ROUNDUP(B->max,B->window);
MR_IN(222)
#ifndef MR_ALWAYS_BINARY
if (mr_mip->base != mr_mip->base2)
{
mr_berror(_MIPP_ MR_ERR_NOT_SUPPORTED);
MR_OUT
return;
}
#endif
if (logb2(_MIPP_ e[0])>B->max || logb2(_MIPP_ e[1])>B->max)
{
mr_berror(_MIPP_ MR_ERR_EXP_TOO_BIG);
MR_OUT
return;
}
ecurve_init(_MIPP_ B->a,B->b,B->n,MR_BEST);
mr_mip->TWIST=TRUE;
#ifdef MR_STATIC
memset(mem,0,MR_BIG_RESERVE(10));
#else
mem=memalloc(_MIPP_ 10);
#endif
z.x.a=mirvar_mem(_MIPP_ mem, 0);
z.x.b=mirvar_mem(_MIPP_ mem, 1);
z.y.a=mirvar_mem(_MIPP_ mem, 2);
z.y.b=mirvar_mem(_MIPP_ mem, 3);
z.marker=MR_EPOINT_INFINITY;
w.x.a=mirvar_mem(_MIPP_ mem, 4);
w.x.b=mirvar_mem(_MIPP_ mem, 5);
w.y.a=mirvar_mem(_MIPP_ mem, 6);
w.y.b=mirvar_mem(_MIPP_ mem, 7);
#ifndef MR_AFFINE_ONLY
w.z.a=mirvar_mem(_MIPP_ mem, 8);
w.z.b=mirvar_mem(_MIPP_ mem, 9);
#endif
w.marker=MR_EPOINT_INFINITY;
len=B->n->len;
maxsize=4*(1<<B->window)*len;
for (i=t-1;i>=0;i--)
{
ecn2_add(_MIPP_ &w,&w);
for (k=0;k<2;k++)
{
j=recode(_MIPP_ e[k],t,B->window,i);
if (j>0)
{
promptr=4*j*len;
init_big_from_rom(z.x.a,len,B->table,maxsize,&promptr);
init_big_from_rom(z.x.b,len,B->table,maxsize,&promptr);
init_big_from_rom(z.y.a,len,B->table,maxsize,&promptr);
init_big_from_rom(z.y.b,len,B->table,maxsize,&promptr);
z.marker=MR_EPOINT_NORMALIZED;
if (k==1) ecn2_psi(_MIPP_ psi,&z);
if (se[k]==PLUS) ecn2_add(_MIPP_ &z,&w);
else ecn2_sub(_MIPP_ &z,&w);
}
}
}
ecn2_norm(_MIPP_ &w);
ecn2_getxy(&w,x,y);
#ifndef MR_STATIC
memkill(_MIPP_ mem,10);
#else
memset(mem,0,MR_BIG_RESERVE(10));
#endif
MR_OUT
}