KGC_TEST/KGC/miracl/source/ecsgen2.c

128 lines
2.9 KiB
C

/*
* Proposed Digital Signature Standard
*
* Elliptic Curve Variation GF(2^m) - See Dr. Dobbs Journal April 1997
*
* This program generates one set of public and private keys in files
* public.ecs and private.ecs respectively. Notice that the public key
* can be much shorter in this scheme, for the same security level.
*
* It is assumed that Curve parameters are to be found in file common2.ecs
*
* The curve is y^2+xy = x^3+Ax^2+B over GF(2^m) using a trinomial or
* pentanomial basis (t^m+t^a+1 or t^m+t^a+t^b+t^c+1). These parameters
* can be generated using the findbase.cpp example program, or taken from tables
* provided, for example in IEEE-P1363 Annex A
*
* The file common2.ecs is presumed to exist and contain
* {m,A,B,q,x,y,a,b,c} where A and B are parameters of the equation
* above, (x,y) is an initial point on the curve, {m,a,b,c} are the field
* parameters, (b is zero for a trinomial) and q is the order of the
* (x,y) point, itself a large prime. The number of points on the curve is
* cf.q where cf is the "co-factor", normally 2 or 4.
*
*/
#include <stdio.h>
#include "miracl.h"
#ifdef MR_COUNT_OPS
int fpm2,fpi2,lpz;
#endif
int main()
{
FILE *fp;
int i,ep,m,a,b,c;
miracl *mip;
epoint *g,*w;
big a2,a6,q,x,y,d;
long seed;
fp=fopen("common2.ecs","rt");
if (fp==NULL)
{
printf("file common2.ecs does not exist\n");
return 0;
}
fscanf(fp,"%d\n",&m);
mip=mirsys(MR_ROUNDUP(mr_abs(m),4),16); /* MR_ROUNDUP rounds up m/MIRACL */
a2=mirvar(0);
a6=mirvar(0);
q=mirvar(0);
x=mirvar(0);
y=mirvar(0);
d=mirvar(0);
innum(a2,fp);
innum(a6,fp);
innum(q,fp);
innum(x,fp);
innum(y,fp);
fscanf(fp,"%d\n",&a);
fscanf(fp,"%d\n",&b);
fscanf(fp,"%d\n",&c);
fclose(fp);
/* randomise */
printf("Enter 9 digit random number seed = ");
scanf("%ld",&seed);
getchar();
mip->IOBASE=16;
irand(seed);
ecurve2_init(m,a,b,c,a2,a6,FALSE,MR_BEST); /* initialise curve */
g=epoint_init();
w=epoint_init();
if (!epoint2_set(x,y,0,g)) /* initialise point of order q */
{
printf("Problem - point (x,y) is not on the curve\n");
return 0;
}
ecurve2_mult(q,g,w);
if (!point_at_infinity(w))
{
printf("Problem - point (x,y) is not of order q\n");
return 0;
}
/* generate public/private keys */
bigrand(q,d);
#ifdef MR_COUNT_OPS
fpm2=fpi2=0; lpz=1000;
for (i=0;i<lpz;i++)
{
#endif
ecurve2_mult(d,g,g);
#ifdef MR_COUNT_OPS
}
printf("Number of muls= %d\n",fpm2/lpz);
printf("Number of invs= %d\n",fpi2/lpz);
#endif
ep=epoint2_get(g,x,x); /* compress point */
printf("public key = %d ",ep);
otnum(x,stdout);
fp=fopen("public.ecs","wt");
fprintf(fp,"%d ",ep);
otnum(x,fp);
fclose(fp);
fp=fopen("private.ecs","wt");
otnum(d,fp);
fclose(fp);
return 0;
}