KGC_TEST/KGC/miracl/source/index.cpp

125 lines
2.7 KiB
C++

/*
* Test program to find discrete logarithms using Pollard's rho method.
* Suitable primes are generated by "genprime" program
*
* See "Monte Carlo Methods for Index Computation"
* by J.M. Pollard in Math. Comp. Vol. 32 1978 pp 918-924
*
* Requires: big.cpp crt.cpp
*/
#include <iostream>
#include <fstream>
#include "big.h" /* include MIRACL system */
#include "crt.h" /* chinese remainder thereom */
#define NPRIMES 10
#define PROOT 2
using namespace std;
Miracl precision=100;
static Big p,p1,order,lim1,lim2;
static BOOL flag=FALSE;
void iterate(Big &x,Big &q,Big &r,Big &a,Big &b)
{ /* apply Pollards random mapping */
if (x<lim1)
{
x=(x*q)%p;
a+=1;
if (a==order) a=0;
return;
}
if (x<lim2)
{
x=(x*x)%p;
a*=2;
if (a>=order) a-=order;
b*=2;
if (b>=order) b-=order;
return;
}
x=(x*r)%p;
b+=1;
if (b==order) b=0;
}
long rho(Big &q,Big &r,Big &m,Big &n)
{ /* find q^m = r^n */
long iter,rr,i;
Big ax,bx,ay,by,x,y;
x=1;
y=1;
iter=0L;
rr=1L;
do
{ /* Brent's Cycle finder */
x=y;
ax=ay;
bx=by;
rr*=2;
for (i=1;i<=rr;i++)
{
iter++;
iterate(y,q,r,ay,by);
if (x==y) break;
}
} while (x!=y);
m=ax-ay;
if (m<0) m+=order;
n=by-bx;
if (n<0) n+=order;
return iter;
}
int main()
{
int i,np;
long iter;
Big pp[NPRIMES],rem[NPRIMES];
Big m,n,Q,R,q,w,x;
ifstream prime_data("prime.dat");
p1=1;
prime_data >> np;
for (i=0;i<np;i++) prime_data >> pp[i];
for (i=0;i<np;i++) p1*=pp[i];
p=p1+1;
if (!prime(p))
{
cout << "Huh - modulus is not prime!";
return 0;
}
lim1=p/3;
lim2=2*lim1;
cout << "solve discrete logarithm problem - using Pollard rho method\n";
cout << "finds x in y=" << PROOT << "^x mod p, given y, for fixed p\n";
cout << "p=";
cout << p << endl;
cout << "given factorisation of p-1 = \n2";
for (i=1;i<np;i++)
cout << "*" << pp[i];
cout << "\n\nEnter y= ";
cin >> q;
Crt chinese(np,pp);
for (i=0;i<np;i++)
{ /* accumulate solutions for each pp */
w=p1;
w/=pp[i];
Q=pow(q,w,p);
R=pow(PROOT,w,p);
order=pp[i];
iter=rho(Q,R,m,n);
w=inverse(m,order);
rem[i]=(w*n)%order;
cout << iter << " iterations needed" << endl;
}
x=chinese.eval(rem); /* apply Chinese remainder thereom */
cout << "Discrete log of y= ";
cout << x << endl;
w=pow(PROOT,x,p);
cout << "check = ";
cout << w << endl;
return 0;
}