KGC_TEST/KGC/miracl/source/lenstra.cpp

249 lines
6.7 KiB
C++

/*
* Program to factor big numbers using Lenstras elliptic curve method.
* Works when for some prime divisor p of n, p+1+d has only
* small factors, where d depends on the particular curve used.
* See "Speeding the Pollard and Elliptic Curve Methods"
* by Peter Montgomery, Math. Comp. Vol. 48 Jan. 1987 pp243-264
*
* Requires: big.cpp zzn.cpp
*
*/
#include <iostream>
#include <iomanip>
#include "zzn.h"
using namespace std;
#define LIMIT1 10000 /* must be int, and > MULT/2 */
#define LIMIT2 1000000L /* may be long */
#define MULT 2310 /* must be int, product of small primes 2.3... */
#define NEXT 13 /* next small prime */
#define NCURVES 20 /* number of curves to try */
Miracl precision=50; /* number of ints per ZZn */
miracl *mip;
static long p;
static int iv;
static ZZn ak,q,x,z,x1,z1,x2,z2,xt,zt,fvw,fu[1+MULT/2];
static BOOL cp[1+MULT/2],Plus[1+MULT/2],Minus[1+MULT/2];
void marks(long start)
{ /* mark non-primes in this interval. Note *
* that those < NEXT are dealt with already */
int i,pr,j,k;
for (j=1;j<=MULT/2;j+=2) Plus[j]=Minus[j]=TRUE;
for (i=0;;i++)
{ /* mark in both directions */
pr=mip->PRIMES[i];
if (pr<NEXT) continue;
if ((long)pr*pr>start) break;
k=pr-start%pr;
for (j=k;j<=MULT/2;j+=pr)
Plus[j]=FALSE;
k=start%pr;
for (j=k;j<=MULT/2;j+=pr)
Minus[j]=FALSE;
}
}
void duplication(ZZn sum,ZZn diff,ZZn& x,ZZn& z)
{ /* double a point on the curve P(x,z)=2.P(x1,z1) */
ZZn t;
t=sum*sum;
z=diff*diff;
x=z*t; /* x = sum^2.diff^2 */
t-=z; /* t = sum^2-diff^2 */
z+=ak*t; /* z = ak*t +diff^2 */
z*=t;
}
void addition(ZZn xd,ZZn zd,ZZn sm1,ZZn df1,ZZn sm2,ZZn df2,ZZn& x,ZZn& z)
{ /* add two points on the curve P(x,z)=P(x1,z1)+P(x2,z2) *
* given their difference P(xd,zd) */
ZZn t;
x=df2*sm1;
z=df1*sm2;
t=z+x;
z-=x;
x=t*t;
x*=zd; /* x = zd.[df1.sm2+sm1.df2]^2 */
z*=z;
z*=xd; /* z = xd.[df1.sm2-sm1.df2]^2 */
}
void ellipse(ZZn x,ZZn z,int r,ZZn& x1,ZZn& z1,ZZn& x2,ZZn& z2)
{ /* calculate point r.P(x,z) on curve */
int k,rr;
k=1;
rr=r;
x1=x;
z1=z;
duplication(x1+z1,x1-z1,x2,z2); /* generate 2.P */
while ((rr/=2)>1) k*=2;
while (k>0)
{ /* use binary method */
if ((r&k)==0)
{ /* double P(x1,z1) mP to 2mP */
addition(x,z,x1+z1,x1-z1,x2+z2,x2-z2,x2,z2);
duplication(x1+z1,x1-z1,x1,z1);
}
else
{ /* double P(x2,z2) (m+1)P to (2m+2)P */
addition(x,z,x1+z1,x1-z1,x2+z2,x2-z2,x1,z1);
duplication(x2+z2,x2-z2,x2,z2);
}
k/=2;
}
}
void next_phase()
{ /* now change gear */
ZZn s1,d1,s2,d2;
long interval;
xt=x;
zt=z;
s2=x+z;
d2=x-z; /* P = (s2,d2) */
duplication(s2,d2,x,z);
s1=x+z;
d1=x-z; /* 2.P = (s1,d1) */
fu[1]=x1/z1;
addition(x1,z1,s1,d1,s2,d2,x2,z2); /* 3.P = (x2,z2) */
for (int m=5;m<=MULT/2;m+=2)
{ /* calculate m.P = (x,z) and store fu[m] = x/z */
addition(x1,z1,x2+z2,x2-z2,s1,d1,x,z);
x1=x2;
z1=z2;
x2=x;
z2=z;
if (!cp[m]) continue;
fu[m]=x2/z2;
}
ellipse(xt,zt,MULT,x,z,x2,z2);
xt=x+z;
zt=x-z; /* MULT.P = (xt,zt) */
iv=p/MULT;
if (p%MULT>MULT/2) iv++;
interval=(long)iv*MULT;
p=interval+1;
ellipse(x,z,iv,x1,z1,x2,z2); /* (x1,z1) = iv.MULT.P */
fvw=x1/z1;
marks(interval);
q=fvw-fu[p%MULT];
}
int giant_step()
{ /* increment giant step */
long interval;
iv++;
interval=(long)iv*MULT;
p=interval+1;
marks(interval);
fvw=x2/z2;
addition(x1,z1,x2+z2,x2-z2,xt,zt,x,z);
x1=x2;
z1=z2;
x2=x;
z2=z;
return 1;
}
int main()
{ /* factoring program using Lenstras Elliptic Curve method */
int phase,m,k,nc,pos,btch;
long i,pa;
Big n,t;
ZZn tt,u,v;
mip=&precision;
gprime(LIMIT1);
for (m=1;m<=MULT/2;m+=2)
if (igcd(MULT,m)==1) cp[m]=TRUE;
else cp[m]=FALSE;
cout << "input number to be factored\n";
cin >> n;
if (prime(n))
{
cout << "this number is prime!\n";
return 0;
}
modulo(n); /* do all arithmetic mod n */
for (nc=1,k=6;k<100;k++)
{ /* try a new curve */
u=k*k-5;
v=4*k;
x=u*u*u;
z=v*v*v;
ak=((v-u)*(v-u)*(v-u)*(3*u+v))/(16*u*u*u*v);
phase=1;
p=0;
i=0;
btch=50;
cout << "phase 1 - trying all primes less than " << LIMIT1;
cout << "\nprime= " << setw(8) << p;
forever
{ /* main loop */
if (phase==1)
{
p=mip->PRIMES[i];
if (mip->PRIMES[i+1]==0)
{ /* now change gear */
phase=2;
cout << "\nphase 2 - trying last prime less than ";
cout << LIMIT2 << "\nprime= " << setw(8) << p;
next_phase();
btch*=100;
i++;
continue;
}
pa=p;
while ((LIMIT1/p) > pa) pa*=p;
ellipse(x,z,(int)pa,x1,z1,x2,z2);
x=x1;
q=z=z1;
}
else
{ /* looking for last large prime factor of (p+1+d) */
p+=2;
pos=p%MULT;
if (pos>MULT/2) pos=giant_step();
if (!cp[pos]) continue;
/* if neither interval +/- pos is prime, don't bother */
if (!Plus[pos] && !Minus[pos]) continue;
q*=(fvw-fu[pos]); /* batch gcds */
}
if (i++%btch==0)
{ /* try for a solution */
cout << "\b\b\b\b\b\b\b\b" << setw(8) << p << flush;
t=gcd(q,n);
if (t==1)
{
if (p>LIMIT2) break;
else continue;
}
if (t==n)
{
cout << "\ndegenerate case";
break;
}
if (prime(t)) cout << "\nprime factor " << t;
else cout << "\ncomposite factor " << t;
n/=t;
if (prime(n)) cout << "\nprime factor " << n;
else cout << "\ncomposite factor " << n;
cout << endl;
return 0;
}
}
if (nc>NCURVES) break;
cout << "\ntrying a different curve " << nc << "\n";
}
cout << "\nfailed to factor\n";
return 0;
}