KGC_TEST/miracl/source/brent_mt.c

90 lines
2.6 KiB
C

/*
* Program to factor big numbers using Brent-Pollard method.
* See "An Improved Monte Carlo Factorization Algorithm"
* by Richard Brent in BIT Vol. 20 1980 pp 176-184
*/
#include <stdio.h>
#include "miracl.h"
#define mr_min(a,b) ((a) < (b)? (a) : (b))
int main()
{ /* factoring program using Brents method */
long k,r,i,m,iter;
big x,y,z,n,q,ys,c3;
miracl instance; /* create miracl workspace on the stack */
#ifndef MR_STATIC
miracl *mip=mirsys(&instance,16,0); /* initialise miracl workspace and define size of bigs here */
char *mem=memalloc(mip,7); /* allocate space from the heap for 7 bigs */;
#else
miracl *mip=mirsys(&instance,MR_STATIC,0); /* size of bigs is fixed */
char mem[MR_BIG_RESERVE(7)]; /* reserve space on the stack for 7 bigs */
memset(mem,0,MR_BIG_RESERVE(7)); /* clear this memory */
#endif
x=mirvar_mem(mip,mem,0); /* initialise the 7 bigs */
y=mirvar_mem(mip,mem,1);
ys=mirvar_mem(mip,mem,2);
z=mirvar_mem(mip,mem,3);
n=mirvar_mem(mip,mem,4);
q=mirvar_mem(mip,mem,5);
c3=mirvar_mem(mip,mem,6);
convert(mip,3,c3);
printf("input number to be factored\n");
cinnum(mip,n,stdin);
if (isprime(mip,n))
{
printf("this number is prime!\n");
return 0;
}
m=10L;
r=1L;
iter=0L;
do
{
printf("iterations=%5ld",iter);
convert(mip,1,q);
do
{
copy(y,x);
for (i=1L;i<=r;i++)
mad(mip,y,y,c3,n,n,y);
k=0;
do
{
iter++;
if (iter%10==0) printf("\b\b\b\b\b%5ld",iter);
fflush(stdout);
copy(y,ys);
for (i=1L;i<=mr_min(m,r-k);i++)
{
mad(mip,y,y,c3,n,n,y);
subtract(mip,y,x,z);
mad(mip,z,q,q,n,n,q);
}
egcd(mip,q,n,z);
k+=m;
} while (k<r && size(z)==1);
r*=2;
} while (size(z)==1);
if (mr_compare(z,n)==0) do
{ /* back-track */
mad(mip,ys,ys,c3,n,n,ys);
subtract(mip,ys,x,z);
} while (egcd(mip,z,n,z)==1);
if (!isprime(mip,z))
printf("\ncomposite factor ");
else printf("\nprime factor ");
cotnum(mip,z,stdout);
if (mr_compare(z,n)==0) return 0;
divide(mip,n,z,n);
divide(mip,y,n,n);
} while (!isprime(mip,n));
printf("prime factor ");
cotnum(mip,n,stdout);
return 0;
}