452 lines
8.9 KiB
C++
452 lines
8.9 KiB
C++
/*
|
|
|
|
Scott's AKE Client/Server testbed
|
|
|
|
See http://eprint.iacr.org/2002/164
|
|
|
|
Compile as
|
|
cl /O2 /GX /DZZNS=16 ake2cpt.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
|
|
using COMBA build
|
|
|
|
Cocks-Pinch curve - Tate Pairing
|
|
|
|
Requires file k2.ecs which contains details of non-supersingular
|
|
elliptic curve, with order divisible by q=2^159+2^17+1, and security
|
|
multiplier k=2. The prime p is 512 bits
|
|
|
|
CHANGES: Use twisted curve to avoid ECn2 arithmetic completely
|
|
Use Lucas functions to evaluate powers.
|
|
Output of tate pairing is now a ZZn (half-size)
|
|
|
|
Modified to prevent sub-group confinement attack
|
|
|
|
Speeded up using ideas from
|
|
"Efficient Computation of Tate Pairing in Projective Coordinate over General Characteristic Fields"
|
|
by Sanjit Chatterjee1, Palash Sarkar1 and Rana Barua1
|
|
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include "ecn.h"
|
|
#include <ctime>
|
|
#include "zzn2.h"
|
|
|
|
using namespace std;
|
|
|
|
Miracl precision(16,0);
|
|
|
|
// Using SHA-512 as basic hash algorithm
|
|
|
|
#define HASH_LEN 64
|
|
|
|
//
|
|
// Define one or the other of these
|
|
//
|
|
// Which is faster depends on the I/M ratio - See imratio.c
|
|
// Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE
|
|
//
|
|
|
|
#ifdef MR_AFFINE_ONLY
|
|
#define AFFINE
|
|
#else
|
|
#define PROJECTIVE
|
|
#endif
|
|
|
|
//
|
|
// Tate Pairing Code
|
|
//
|
|
// Extract ECn point in internal ZZn format
|
|
//
|
|
|
|
void extract(ECn& A,ZZn& x,ZZn& y)
|
|
{
|
|
x=(A.get_point())->X;
|
|
y=(A.get_point())->Y;
|
|
}
|
|
|
|
#ifdef PROJECTIVE
|
|
void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z)
|
|
{
|
|
big t;
|
|
x=(A.get_point())->X;
|
|
y=(A.get_point())->Y;
|
|
t=(A.get_point())->Z;
|
|
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
|
|
else z=t;
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Line from A to destination C. Let A=(x,y)
|
|
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
|
|
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
|
|
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
|
|
//
|
|
|
|
ZZn2 line(ECn& A,ECn& C,ECn& B,int type,ZZn& slope,ZZn& ex1,ZZn& ex2,ZZn& a,ZZn& d)
|
|
{
|
|
ZZn2 w;
|
|
ZZn n=a;
|
|
|
|
#ifdef AFFINE
|
|
ZZn x,y;
|
|
extract(A,x,y);
|
|
n+=x; n*=slope;
|
|
w.set(y,-d); w-=n;
|
|
#endif
|
|
#ifdef PROJECTIVE
|
|
if (type==MR_ADD)
|
|
{
|
|
ZZn x2,y2,x3,z3;
|
|
extract(B,x2,y2);
|
|
extract(C,x3,x3,z3);
|
|
w.set(slope*(a+x2)-z3*y2,z3*d);
|
|
}
|
|
if (type==MR_DOUBLE)
|
|
{
|
|
ZZn x,y,x3,z3;
|
|
extract(A,x,y);
|
|
extract(C,x3,x3,z3);
|
|
w.set(-(slope*ex2)*a-slope*x+ex1,-(z3*ex2)*d);
|
|
}
|
|
/*
|
|
extract(A,x,y,z);
|
|
x*=z; t=z; z*=z; z*=t;
|
|
n*=z;
|
|
n+=x;
|
|
z*=d; w.set(y,-z);
|
|
extract(C,x,y,z); // only need z - its the denominator of the slope
|
|
w*=z;
|
|
n*=slope;
|
|
w-=n;
|
|
*/
|
|
#endif
|
|
return w;
|
|
}
|
|
|
|
//
|
|
// Add A=A+B (or A=A+A)
|
|
// Bump up num
|
|
//
|
|
|
|
ZZn2 g(ECn& A,ECn& B,ZZn& a,ZZn& d)
|
|
{
|
|
int type;
|
|
ZZn lam,extra1,extra2;
|
|
ECn P=A;
|
|
big ptr,ex1,ex2;
|
|
|
|
// Evaluate line from A - lam is line slope
|
|
type=A.add(B,&ptr,&ex1,&ex2);
|
|
if (!type) return (ZZn2)1;
|
|
lam=ptr; // in projective case slope = lam/A.z
|
|
extra1=ex1;
|
|
extra2=ex2;
|
|
|
|
return line(P,A,B,type,lam,extra1,extra2,a,d);
|
|
}
|
|
|
|
//
|
|
// Tate Pairing - note denominator elimination has been applied
|
|
//
|
|
// P is a point of order q. Q(x,y) is a point of order q.
|
|
// Note that P is a point on the curve over Fp, Q(x,y) a point on the
|
|
// curve E(Fp^2) -> Q([Qx,0],[0,Qy])
|
|
// Here we have morphed Q onto the twisted curve E'(Fp)
|
|
//
|
|
|
|
BOOL tate(ECn& P,ECn& Q,Big& q,ZZn& r)
|
|
{
|
|
int i,nb,qnr;
|
|
ZZn2 res;
|
|
ZZn a,d;
|
|
Big p,x,y,n;
|
|
ECn A;
|
|
|
|
p=get_modulus();
|
|
|
|
// Note that q is fixed - q.P=2^17*(2^142.P + P) + P
|
|
|
|
normalise(P);
|
|
normalise(Q); // make sure z=1
|
|
extract(Q,a,d);
|
|
|
|
qnr=get_mip()->qnr;
|
|
if (qnr==-2)
|
|
{
|
|
a=a/2; /* Convert off twist */
|
|
d=d/4;
|
|
}
|
|
|
|
A=P; // remember A
|
|
|
|
n=q-1;
|
|
nb=bits(n);
|
|
|
|
res=1;
|
|
|
|
for (i=nb-2;i>=0;i--)
|
|
{
|
|
res*=res; // 2 modmul
|
|
res*=g(A,A,a,d);
|
|
|
|
if (bit(n,i))
|
|
res*=g(A,P,a,d); // executed just once
|
|
}
|
|
|
|
if (A != -P || res.iszero()) return FALSE;
|
|
|
|
res=conj(res)/res; // raise to power of (p-1)
|
|
|
|
r=powl(real(res),(p+1)/q); // raise to power of (p+1)/q
|
|
|
|
if (r==1) return FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
void rmul(ECn& P,Big &q)
|
|
{
|
|
Big n;
|
|
ECn A;
|
|
int i,nb;
|
|
|
|
A=P;
|
|
n=q-1;
|
|
nb=bits(n);
|
|
|
|
for (i=nb-2;i>=0;i--)
|
|
{
|
|
A.add(A);
|
|
if (bit(n,i))
|
|
A.add(P);
|
|
}
|
|
}
|
|
*/
|
|
|
|
//
|
|
// Hash functions
|
|
//
|
|
|
|
Big H1(char *string)
|
|
{ // Hash a zero-terminated string to a number < modulus
|
|
Big h,p;
|
|
char s[HASH_LEN];
|
|
int i,j;
|
|
sha512 sh;
|
|
|
|
shs512_init(&sh);
|
|
|
|
for (i=0;;i++)
|
|
{
|
|
if (string[i]==0) break;
|
|
shs512_process(&sh,string[i]);
|
|
}
|
|
shs512_hash(&sh,s);
|
|
p=get_modulus();
|
|
h=1; j=0; i=1;
|
|
forever
|
|
{
|
|
h*=256;
|
|
if (j==HASH_LEN) {h+=i++; j=0;}
|
|
else h+=s[j++];
|
|
if (h>=p) break;
|
|
}
|
|
h%=p;
|
|
return h;
|
|
}
|
|
|
|
Big H2(ZZn x)
|
|
{ // Hash an Fp to a big number
|
|
sha sh;
|
|
Big a,h,p;
|
|
char s[20];
|
|
int m;
|
|
|
|
shs_init(&sh);
|
|
a=(Big)x;
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&sh,m);
|
|
a/=256;
|
|
}
|
|
shs_hash(&sh,s);
|
|
h=from_binary(20,s);
|
|
return h;
|
|
}
|
|
|
|
// Hash an Identity to a curve point in G2
|
|
|
|
ECn Hash(char *ID)
|
|
{
|
|
ECn T;
|
|
Big a=H1(ID);
|
|
|
|
while (!is_on_curve(a)) a+=1;
|
|
T.set(a); // Make sure its on E(F_p)
|
|
|
|
return T;
|
|
}
|
|
|
|
// Hash an Identity to a curve point and map to point of order q in G1
|
|
|
|
ECn hash_and_map(char *ID,Big cof)
|
|
{
|
|
ECn T;
|
|
Big a=H1(ID);
|
|
|
|
while (!is_on_curve(a)) a+=1;
|
|
T.set(a);
|
|
|
|
T*=cof;
|
|
|
|
return T;
|
|
}
|
|
|
|
/* Note that if #E(Fp) = p+1-t
|
|
then #E(Fp2) = (p+1-t)(p+1+t) (a multiple of #E(Fp))
|
|
(Weil's Theorem)
|
|
*/
|
|
|
|
int main()
|
|
{
|
|
ifstream common("k2.ecs"); // elliptic curve parameters
|
|
miracl* mip=&precision;
|
|
ECn Alice,Bob,sA,sB;
|
|
ECn Server,sS;
|
|
ZZn res,sp,ap,bp;
|
|
Big r,a,b,s,ss,p,q,x,y,B,cof;
|
|
int i,nbits,A,qnr;
|
|
time_t seed;
|
|
|
|
common >> nbits;
|
|
mip->IOBASE=16;
|
|
common >> p;
|
|
common >> A;
|
|
common >> B;
|
|
common >> cof;
|
|
common >> q; // number of points on curve = cof*q
|
|
|
|
time(&seed);
|
|
irand((long)seed);
|
|
|
|
//
|
|
// initialise twisted curve for points in G2
|
|
// Server ID is hashed to points on this
|
|
//
|
|
|
|
modulo(p);
|
|
qnr=mip->qnr;
|
|
|
|
#ifdef AFFINE
|
|
ecurve(qnr*qnr*A,qnr*qnr*qnr*B,p,MR_AFFINE);
|
|
#endif
|
|
#ifdef PROJECTIVE
|
|
ecurve(qnr*qnr*A,qnr*qnr*qnr*B,p,MR_PROJECTIVE);
|
|
#endif
|
|
|
|
mip->IOBASE=16;
|
|
|
|
// hash Identity to curve point in G2
|
|
// Server does not need to be of order q (its order is a multiple of q)
|
|
|
|
ss=rand(q); // TA's super-secret
|
|
|
|
cout << "Mapping Server ID to point on twisted curve" << endl;
|
|
Server=Hash((char *)"Server");
|
|
|
|
cout << "Server= " << Server << endl;
|
|
cout << "Server*cof= " << (2*(p+1)-cof*q)*Server << endl;
|
|
|
|
cout << "Server visits trusted authority" << endl;
|
|
sS=ss*Server;
|
|
|
|
// initialise curve for points in G1
|
|
|
|
#ifdef AFFINE
|
|
ecurve(A,B,p,MR_AFFINE);
|
|
#endif
|
|
#ifdef PROJECTIVE
|
|
ecurve(A,B,p,MR_PROJECTIVE);
|
|
#endif
|
|
|
|
cout << "Mapping Alice & Bob ID's to points on curve" << endl;
|
|
|
|
Alice=hash_and_map((char *)"Alice",cof);
|
|
Bob= hash_and_map((char *)"Robert",cof);
|
|
|
|
// Alice, Bob are points of order q
|
|
|
|
cout << "Alice and Bob visit Trusted Authority" << endl;
|
|
|
|
sA=ss*Alice;
|
|
sB=ss*Bob;
|
|
|
|
cout << "Alice and Server Key exchange" << endl;
|
|
|
|
a=rand(q); // Alice's random number
|
|
s=rand(q); // Server's random number
|
|
|
|
if (!tate(sA,Server,q,res)) cout << "Trouble" << endl;
|
|
|
|
if (powl(res,q)!=(ZZn)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
ap=powl(res,a);
|
|
|
|
if (!tate(Alice,sS,q,res)) cout << "Trouble" << endl;
|
|
|
|
if (powl(res,q)!=(ZZn)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
|
|
sp=powl(res,s);
|
|
|
|
cout << "Alice Key= " << H2(powl(sp,a)) << endl;
|
|
cout << "Server Key= " << H2(powl(ap,s)) << endl;
|
|
|
|
cout << "Bob and Server Key exchange" << endl;
|
|
|
|
b=rand(q); // Bob's random number
|
|
s=rand(q); // Server's random number
|
|
|
|
//for (i=0;i<10000;i++)
|
|
if (!tate(sB,Server,q,res)) cout << "Trouble" << endl;
|
|
if (powl(res,q)!=(ZZn)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
bp=powl(res,b);
|
|
|
|
if (!tate(Bob,sS,q,res)) cout << "Trouble" << endl;
|
|
sp=powl(res,s);
|
|
|
|
cout << "Bob Key= " << H2(powl(sp,b)) << endl;
|
|
cout << "Server Key= " << H2(powl(bp,s)) << endl;
|
|
|
|
cout << "Alice and Bob's attempted Key exchange" << endl;
|
|
|
|
if (!tate(Alice,sB,q,res)) cout << "Trouble" << endl;
|
|
if (powl(res,q)!=(ZZn)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
bp=powl(res,b);
|
|
|
|
if (!tate(sA,Bob,q,res)) cout << "Trouble" << endl;
|
|
ap=powl(res,a);
|
|
|
|
cout << "Alice Key= " << H2(powl(bp,a)) << endl;
|
|
cout << "Bob Key= " << H2(powl(ap,b)) << endl;
|
|
|
|
return 0;
|
|
}
|