KGC_TEST/miracl/source/curve/pairing/ake2cpt2.cpp

460 lines
8.5 KiB
C++

/*
Scott's AKE Client/Server testbed
See http://eprint.iacr.org/2002/164
Compile as
cl /O2 /GX /DZZNS=16 ake2cpt2.cpp ecn2.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
using COMBA build
Cocks-Pinch curve - Type 2 Tate pairing
Requires file k2.ecs which contains details of non-supersingular
elliptic curve, with order divisible by q=2^159+2^17+1, and security
multiplier k=2. The prime p is 512 bits
CHANGES: This version uses a Type 2 pairing
Use Lucas functions to evaluate powers.
Output of tate pairing is now a ZZn (half-size)
Modified to prevent sub-group confinement attack
For a Type 2 curve ecap(P,Q) = e(Trace(P),Q)
ecap(P,Q) = ecap(Q,P)
*/
#include <iostream>
#include <fstream>
#include "ecn.h"
#include <ctime>
#include "zzn2.h"
#include "ecn2.h"
using namespace std;
Miracl precision(32,0);
// Using SHA-512 as basic hash algorithm
#define HASH_LEN 64
//
// Define one or the other of these
//
// Which is faster depends on the I/M ratio - See imratio.c
// Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE
//
#ifdef MR_AFFINE_ONLY
#define AFFINE
#else
#define PROJECTIVE
#endif
//
// Tate Pairing Code
//
// Extract ECn point in internal ZZn format
//
void extract(ECn& A,ZZn& x,ZZn& y)
{
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
#ifdef PROJECTIVE
void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z)
{
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
#endif
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn2 line(ECn& A,ECn& C,ZZn& slope,ZZn2& Qx,ZZn2& Qy)
{
ZZn2 w=Qy,n=Qx;
ZZn x,y,z,t;
#ifdef AFFINE
extract(A,x,y);
n-=x; n*=slope;
w-=y; w-=n;
#endif
#ifdef PROJECTIVE
extract(A,x,y,z);
x*=z; t=z; z*=z; z*=t;
n*=z;
n-=x;
w*=z;; w-=y;
extract(C,x,y,z); // only need z - its the denominator of the slope
w*=z;
n*=slope;
w-=n;
#endif
return w;
}
/*
ZZn2 vertical(ECn& A,ZZn2& Qx)
{
ZZn2 n=Qx;
ZZn x,y,z;
#ifdef AFFINE
extract(A,x,y);
n-=x;
#endif
#ifdef PROJECTIVE
extract(A,x,y,z);
z*=z;
n*=z; n-=x;
#endif
return n;
}
*/
//
// Add A=A+B (or A=A+A)
// Bump up num
//
ZZn2 g(ECn& A,ECn& B,ZZn2& Qx,ZZn2& Qy)
{
int type;
ZZn lam;
ECn P=A;
big ptr;
// Evaluate line from A - lam is line slope
type=A.add(B,&ptr);
if (!type) return (ZZn2)1;
lam=ptr; // in projective case slope = lam/A.z
return line(P,A,lam,Qx,Qy) /* *conj(vertical(A,Qx)) */ ;
}
ECn2 Trace2(ECn2 P)
{
ECn R;
ECn2 Q;
ZZn2 x,y;
Big X,Y;
P.get(x,y);
x=conj(x); y=conj(y);
Q.set(x,y);
P+=Q;
P.norm();
return P;
}
//
// Tate Pairing - note denominator elimination has been applied
//
// P is a point of order q. Q(x,y) is a point of order q.
// Note that P is a point on the curve over Fp, Q(x,y) a general point on the
// curve E(Fp^2)
//
BOOL tate(ECn& P,ECn2& Q,Big& q,ZZn& r)
{
int i,nb,qnr;
ZZn2 res;
ZZn2 Qx,Qy;
Big p,x,y;
ECn A;
ECn2 NQ,TQ;
p=get_modulus();
// Note that q is fixed - q.P=2^17*(2^142.P + P) + P
// Now set Q = kQ-Tr(Q) so we can use denominator elimination
normalise(P);
Q.norm();
NQ=Q;
NQ=2*NQ;
TQ=Trace2(Q);
NQ-=TQ;
NQ.get(Qx,Qy);
A=P; // remember A
nb=bits(q);
res=1;
for (i=nb-2;i>=0;i--)
{
res*=res; // 2 modmul
res*=g(A,A,Qx,Qy);
if (bit(q,i))
res*=g(A,P,Qx,Qy); // executed just once
}
if (!A.iszero() || res.iszero()) return FALSE;
res=conj(res)/res; // raise to power of (p-1)
r=powl(real(res),(p+1)/q); // raise to power of (p+1)/q
if (r==1) return FALSE;
return TRUE;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha512 sh;
shs512_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs512_process(&sh,string[i]);
}
shs512_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H2(ZZn x)
{ // Hash an Fp to a big number
sha sh;
Big a,h,p;
char s[20];
int m;
shs_init(&sh);
a=(Big)x;
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
shs_hash(&sh,s);
h=from_binary(20,s);
return h;
}
// hash to a *general* point of order q on E(F_p^2)
ECn2 hash2(char *ID)
{
ECn2 T;
ZZn2 x;
Big x0,y0=1; // Note y0 !=0
x0=H1(ID);
do
{
x.set(x0,y0);
x0+=1;
}
while (!is_on_curve(x));
T.set(x);
return T;
}
// Trace function
ECn Trace(ECn2 P)
{
ECn R;
ECn2 Q;
ZZn2 x,y;
Big X,Y;
P.get(x,y);
x=conj(x); y=conj(y);
Q.set(x,y);
P+=Q;
P.get(x,y);
X=real(x);
Y=real(y);
R.set(X,Y);
return R;
}
/* Note that if #E(Fp) = p+1-t
then #E(Fp2) = (p+1-t)(p+1+t) (a multiple of #E(Fp))
(Weil's Theorem)
*/
int main()
{
ifstream common("k2.ecs"); // elliptic curve parameters
miracl* mip=&precision;
ECn2 Alice,Bob,sA,sB,Ps,Pt;
ECn2 Server,sS;
ECn T;
ZZn res,sp,ap,bp;
Big r,a,b,s,ss,p,q,n,x,y,B,cof,cf1,cf2,t;
int nbits,A,qnr;
time_t seed;
common >> nbits;
mip->IOBASE=16;
common >> p;
common >> A;
common >> B;
common >> cof;
common >> q;
time(&seed);
// seed=1;
irand((long)seed);
//
// initialise twisted curve...
// Server ID is hashed to points on this
//
modulo(p);
mip->IOBASE=16;
t=p+1-cof*q;
cf1=(p+1-t)/q;
cf2=(p+1+t)/q;
// initialise curve...
#ifdef AFFINE
ecurve(A,B,p,MR_AFFINE);
#endif
#ifdef PROJECTIVE
ecurve(A,B,p,MR_PROJECTIVE);
#endif
// hash Identity to curve point
ss=rand(q); // TA's super-secret
cout << "Mapping Server ID to point on curve" << endl;
Server=hash2((char *)"Server");
cout << "Server visits trusted authority" << endl;
sS=ss*Server;
sS*=cf1; sS*=cf2;
cout << "Mapping Alice & Bob ID's to points on curve" << endl;
Alice=hash2((char *)"Alice");
Bob=hash2((char *)"Bob");
// Alice, Bob are points of order q
cout << "Alice and Bob visit Trusted Authority" << endl;
sA=ss*Alice;
sA*=cf1; sA*=cf2;
sB=ss*Bob;
sB*=cf1; sB*=cf2;
cout << "Alice and Server Key exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
T=Trace(sA); T*=cf1;
if (!tate(T,Server,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
ap=powl(res,a);
T=Trace(Alice); T*=cf1;
if (!tate(T,sS,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=powl(res,s);
cout << "Alice Key= " << H2(powl(sp,a)) << endl;
cout << "Server Key= " << H2(powl(ap,s)) << endl;
cout << "Bob and Server Key exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
T=Trace(sB); T*=cf1;
if (!tate(T,Server,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
bp=powl(res,b);
T=Trace(Bob); T*=cf1;
if (!tate(T,sS,q,res)) cout << "Trouble" << endl;
sp=powl(res,s);
cout << "Bob Key= " << H2(powl(sp,b)) << endl;
cout << "Server Key= " << H2(powl(bp,s)) << endl;
cout << "Alice and Bob's attempted Key exchange" << endl;
T=Trace(sB); T*=cf1;
if (!tate(T,Alice,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
bp=powl(res,b);
T=Trace(Bob); T*=cf1;
if (!tate(T,sA,q,res)) cout << "Trouble" << endl;
ap=powl(res,a);
cout << "Alice Key= " << H2(powl(bp,a)) << endl;
cout << "Bob Key= " << H2(powl(ap,b)) << endl;
return 0;
}