460 lines
8.5 KiB
C++
460 lines
8.5 KiB
C++
/*
|
|
|
|
Scott's AKE Client/Server testbed
|
|
|
|
See http://eprint.iacr.org/2002/164
|
|
|
|
Compile as
|
|
cl /O2 /GX /DZZNS=16 ake2cpt2.cpp ecn2.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
|
|
using COMBA build
|
|
|
|
Cocks-Pinch curve - Type 2 Tate pairing
|
|
|
|
Requires file k2.ecs which contains details of non-supersingular
|
|
elliptic curve, with order divisible by q=2^159+2^17+1, and security
|
|
multiplier k=2. The prime p is 512 bits
|
|
|
|
CHANGES: This version uses a Type 2 pairing
|
|
Use Lucas functions to evaluate powers.
|
|
Output of tate pairing is now a ZZn (half-size)
|
|
|
|
Modified to prevent sub-group confinement attack
|
|
|
|
For a Type 2 curve ecap(P,Q) = e(Trace(P),Q)
|
|
|
|
ecap(P,Q) = ecap(Q,P)
|
|
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include "ecn.h"
|
|
#include <ctime>
|
|
#include "zzn2.h"
|
|
#include "ecn2.h"
|
|
|
|
using namespace std;
|
|
|
|
Miracl precision(32,0);
|
|
|
|
// Using SHA-512 as basic hash algorithm
|
|
|
|
#define HASH_LEN 64
|
|
|
|
//
|
|
// Define one or the other of these
|
|
//
|
|
// Which is faster depends on the I/M ratio - See imratio.c
|
|
// Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE
|
|
//
|
|
|
|
#ifdef MR_AFFINE_ONLY
|
|
#define AFFINE
|
|
#else
|
|
#define PROJECTIVE
|
|
#endif
|
|
|
|
//
|
|
// Tate Pairing Code
|
|
//
|
|
// Extract ECn point in internal ZZn format
|
|
//
|
|
|
|
void extract(ECn& A,ZZn& x,ZZn& y)
|
|
{
|
|
x=(A.get_point())->X;
|
|
y=(A.get_point())->Y;
|
|
}
|
|
|
|
#ifdef PROJECTIVE
|
|
void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z)
|
|
{
|
|
big t;
|
|
x=(A.get_point())->X;
|
|
y=(A.get_point())->Y;
|
|
t=(A.get_point())->Z;
|
|
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
|
|
else z=t;
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Line from A to destination C. Let A=(x,y)
|
|
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
|
|
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
|
|
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
|
|
//
|
|
|
|
ZZn2 line(ECn& A,ECn& C,ZZn& slope,ZZn2& Qx,ZZn2& Qy)
|
|
{
|
|
ZZn2 w=Qy,n=Qx;
|
|
ZZn x,y,z,t;
|
|
|
|
#ifdef AFFINE
|
|
extract(A,x,y);
|
|
n-=x; n*=slope;
|
|
w-=y; w-=n;
|
|
|
|
#endif
|
|
#ifdef PROJECTIVE
|
|
extract(A,x,y,z);
|
|
x*=z; t=z; z*=z; z*=t;
|
|
n*=z;
|
|
n-=x;
|
|
w*=z;; w-=y;
|
|
extract(C,x,y,z); // only need z - its the denominator of the slope
|
|
w*=z;
|
|
n*=slope;
|
|
w-=n;
|
|
|
|
#endif
|
|
return w;
|
|
}
|
|
|
|
/*
|
|
|
|
ZZn2 vertical(ECn& A,ZZn2& Qx)
|
|
{
|
|
ZZn2 n=Qx;
|
|
ZZn x,y,z;
|
|
#ifdef AFFINE
|
|
extract(A,x,y);
|
|
n-=x;
|
|
#endif
|
|
#ifdef PROJECTIVE
|
|
extract(A,x,y,z);
|
|
z*=z;
|
|
n*=z; n-=x;
|
|
#endif
|
|
return n;
|
|
}
|
|
|
|
*/
|
|
|
|
//
|
|
// Add A=A+B (or A=A+A)
|
|
// Bump up num
|
|
//
|
|
|
|
ZZn2 g(ECn& A,ECn& B,ZZn2& Qx,ZZn2& Qy)
|
|
{
|
|
int type;
|
|
ZZn lam;
|
|
ECn P=A;
|
|
big ptr;
|
|
|
|
// Evaluate line from A - lam is line slope
|
|
type=A.add(B,&ptr);
|
|
if (!type) return (ZZn2)1;
|
|
lam=ptr; // in projective case slope = lam/A.z
|
|
|
|
return line(P,A,lam,Qx,Qy) /* *conj(vertical(A,Qx)) */ ;
|
|
}
|
|
|
|
ECn2 Trace2(ECn2 P)
|
|
{
|
|
ECn R;
|
|
ECn2 Q;
|
|
ZZn2 x,y;
|
|
Big X,Y;
|
|
P.get(x,y);
|
|
x=conj(x); y=conj(y);
|
|
Q.set(x,y);
|
|
P+=Q;
|
|
P.norm();
|
|
return P;
|
|
}
|
|
|
|
//
|
|
// Tate Pairing - note denominator elimination has been applied
|
|
//
|
|
// P is a point of order q. Q(x,y) is a point of order q.
|
|
// Note that P is a point on the curve over Fp, Q(x,y) a general point on the
|
|
// curve E(Fp^2)
|
|
//
|
|
|
|
BOOL tate(ECn& P,ECn2& Q,Big& q,ZZn& r)
|
|
{
|
|
int i,nb,qnr;
|
|
ZZn2 res;
|
|
ZZn2 Qx,Qy;
|
|
Big p,x,y;
|
|
ECn A;
|
|
ECn2 NQ,TQ;
|
|
|
|
p=get_modulus();
|
|
|
|
// Note that q is fixed - q.P=2^17*(2^142.P + P) + P
|
|
|
|
// Now set Q = kQ-Tr(Q) so we can use denominator elimination
|
|
normalise(P);
|
|
Q.norm();
|
|
NQ=Q;
|
|
|
|
NQ=2*NQ;
|
|
TQ=Trace2(Q);
|
|
NQ-=TQ;
|
|
NQ.get(Qx,Qy);
|
|
|
|
A=P; // remember A
|
|
nb=bits(q);
|
|
res=1;
|
|
|
|
for (i=nb-2;i>=0;i--)
|
|
{
|
|
res*=res; // 2 modmul
|
|
res*=g(A,A,Qx,Qy);
|
|
|
|
if (bit(q,i))
|
|
res*=g(A,P,Qx,Qy); // executed just once
|
|
}
|
|
|
|
if (!A.iszero() || res.iszero()) return FALSE;
|
|
res=conj(res)/res; // raise to power of (p-1)
|
|
|
|
r=powl(real(res),(p+1)/q); // raise to power of (p+1)/q
|
|
|
|
if (r==1) return FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
//
|
|
// Hash functions
|
|
//
|
|
|
|
Big H1(char *string)
|
|
{ // Hash a zero-terminated string to a number < modulus
|
|
Big h,p;
|
|
char s[HASH_LEN];
|
|
int i,j;
|
|
sha512 sh;
|
|
|
|
shs512_init(&sh);
|
|
|
|
for (i=0;;i++)
|
|
{
|
|
if (string[i]==0) break;
|
|
shs512_process(&sh,string[i]);
|
|
}
|
|
shs512_hash(&sh,s);
|
|
p=get_modulus();
|
|
h=1; j=0; i=1;
|
|
forever
|
|
{
|
|
h*=256;
|
|
if (j==HASH_LEN) {h+=i++; j=0;}
|
|
else h+=s[j++];
|
|
if (h>=p) break;
|
|
}
|
|
h%=p;
|
|
return h;
|
|
}
|
|
|
|
Big H2(ZZn x)
|
|
{ // Hash an Fp to a big number
|
|
sha sh;
|
|
Big a,h,p;
|
|
char s[20];
|
|
int m;
|
|
|
|
shs_init(&sh);
|
|
a=(Big)x;
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&sh,m);
|
|
a/=256;
|
|
}
|
|
shs_hash(&sh,s);
|
|
h=from_binary(20,s);
|
|
return h;
|
|
}
|
|
|
|
// hash to a *general* point of order q on E(F_p^2)
|
|
|
|
ECn2 hash2(char *ID)
|
|
{
|
|
ECn2 T;
|
|
ZZn2 x;
|
|
Big x0,y0=1; // Note y0 !=0
|
|
|
|
x0=H1(ID);
|
|
do
|
|
{
|
|
x.set(x0,y0);
|
|
x0+=1;
|
|
}
|
|
while (!is_on_curve(x));
|
|
T.set(x);
|
|
|
|
return T;
|
|
}
|
|
|
|
// Trace function
|
|
|
|
ECn Trace(ECn2 P)
|
|
{
|
|
ECn R;
|
|
ECn2 Q;
|
|
ZZn2 x,y;
|
|
Big X,Y;
|
|
P.get(x,y);
|
|
x=conj(x); y=conj(y);
|
|
Q.set(x,y);
|
|
P+=Q;
|
|
|
|
P.get(x,y);
|
|
X=real(x);
|
|
Y=real(y);
|
|
R.set(X,Y);
|
|
return R;
|
|
}
|
|
|
|
/* Note that if #E(Fp) = p+1-t
|
|
then #E(Fp2) = (p+1-t)(p+1+t) (a multiple of #E(Fp))
|
|
(Weil's Theorem)
|
|
*/
|
|
|
|
int main()
|
|
{
|
|
ifstream common("k2.ecs"); // elliptic curve parameters
|
|
miracl* mip=&precision;
|
|
ECn2 Alice,Bob,sA,sB,Ps,Pt;
|
|
ECn2 Server,sS;
|
|
ECn T;
|
|
ZZn res,sp,ap,bp;
|
|
Big r,a,b,s,ss,p,q,n,x,y,B,cof,cf1,cf2,t;
|
|
int nbits,A,qnr;
|
|
time_t seed;
|
|
|
|
common >> nbits;
|
|
mip->IOBASE=16;
|
|
common >> p;
|
|
common >> A;
|
|
common >> B;
|
|
common >> cof;
|
|
common >> q;
|
|
|
|
time(&seed);
|
|
// seed=1;
|
|
irand((long)seed);
|
|
|
|
//
|
|
// initialise twisted curve...
|
|
// Server ID is hashed to points on this
|
|
//
|
|
|
|
modulo(p);
|
|
|
|
mip->IOBASE=16;
|
|
t=p+1-cof*q;
|
|
|
|
cf1=(p+1-t)/q;
|
|
cf2=(p+1+t)/q;
|
|
|
|
// initialise curve...
|
|
|
|
#ifdef AFFINE
|
|
ecurve(A,B,p,MR_AFFINE);
|
|
#endif
|
|
#ifdef PROJECTIVE
|
|
ecurve(A,B,p,MR_PROJECTIVE);
|
|
#endif
|
|
|
|
// hash Identity to curve point
|
|
|
|
ss=rand(q); // TA's super-secret
|
|
|
|
cout << "Mapping Server ID to point on curve" << endl;
|
|
Server=hash2((char *)"Server");
|
|
|
|
|
|
cout << "Server visits trusted authority" << endl;
|
|
sS=ss*Server;
|
|
sS*=cf1; sS*=cf2;
|
|
|
|
cout << "Mapping Alice & Bob ID's to points on curve" << endl;
|
|
|
|
Alice=hash2((char *)"Alice");
|
|
Bob=hash2((char *)"Bob");
|
|
|
|
// Alice, Bob are points of order q
|
|
|
|
cout << "Alice and Bob visit Trusted Authority" << endl;
|
|
|
|
sA=ss*Alice;
|
|
sA*=cf1; sA*=cf2;
|
|
sB=ss*Bob;
|
|
sB*=cf1; sB*=cf2;
|
|
|
|
cout << "Alice and Server Key exchange" << endl;
|
|
|
|
a=rand(q); // Alice's random number
|
|
s=rand(q); // Server's random number
|
|
|
|
T=Trace(sA); T*=cf1;
|
|
if (!tate(T,Server,q,res)) cout << "Trouble" << endl;
|
|
|
|
if (powl(res,q)!=(ZZn)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
ap=powl(res,a);
|
|
|
|
T=Trace(Alice); T*=cf1;
|
|
if (!tate(T,sS,q,res)) cout << "Trouble" << endl;
|
|
|
|
if (powl(res,q)!=(ZZn)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
|
|
sp=powl(res,s);
|
|
|
|
cout << "Alice Key= " << H2(powl(sp,a)) << endl;
|
|
cout << "Server Key= " << H2(powl(ap,s)) << endl;
|
|
|
|
cout << "Bob and Server Key exchange" << endl;
|
|
|
|
b=rand(q); // Bob's random number
|
|
s=rand(q); // Server's random number
|
|
|
|
T=Trace(sB); T*=cf1;
|
|
if (!tate(T,Server,q,res)) cout << "Trouble" << endl;
|
|
if (powl(res,q)!=(ZZn)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
bp=powl(res,b);
|
|
|
|
T=Trace(Bob); T*=cf1;
|
|
if (!tate(T,sS,q,res)) cout << "Trouble" << endl;
|
|
sp=powl(res,s);
|
|
|
|
cout << "Bob Key= " << H2(powl(sp,b)) << endl;
|
|
cout << "Server Key= " << H2(powl(bp,s)) << endl;
|
|
|
|
cout << "Alice and Bob's attempted Key exchange" << endl;
|
|
|
|
T=Trace(sB); T*=cf1;
|
|
if (!tate(T,Alice,q,res)) cout << "Trouble" << endl;
|
|
if (powl(res,q)!=(ZZn)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
bp=powl(res,b);
|
|
|
|
T=Trace(Bob); T*=cf1;
|
|
if (!tate(T,sA,q,res)) cout << "Trouble" << endl;
|
|
ap=powl(res,a);
|
|
|
|
cout << "Alice Key= " << H2(powl(bp,a)) << endl;
|
|
cout << "Bob Key= " << H2(powl(ap,b)) << endl;
|
|
|
|
return 0;
|
|
}
|