KGC_TEST/miracl/source/curve/pairing/ake2cpw.cpp

285 lines
5.7 KiB
C++

/*
Scott's AKE Client/Server testbed
See http://eprint.iacr.org/2002/164
Compile as
cl /O2 /GX /DBIGS=18 ake2cpw.cpp zzn2.cpp big.cpp monty.cpp elliptic.cpp miracl.lib
using COMBA build
Cocks-Pinch curve - Weil pairing
Requires file k2.ecs which contains details of non-supersingular
elliptic curve, with order divisible by q=2^159+2^17+1, and security
multiplier k=2. The prime p is 512 bits
NOTE: Key exchange bandwidth could be reduced by halve using ideas from
"Doing more with Fewer Bits", Brouwer, Pellikaan & Verheul, Asiacrypt
'99
*/
#include <iostream>
#include <fstream>
#include <ctime>
#include "ecn.h"
#include "zzn.h"
#include "zzn2.h"
using namespace std;
Miracl precision(34,0);
// Using SHA-512 as basic hash algorithm
#define HASH_LEN 64
//
// Weil Pairing Code
//
//
// Extract ECn point in internal ZZn format
//
void extract(ECn& A,ZZn& x,ZZn& y)
{
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
ZZn2 g(ECn& A,ECn& B,ECn& C,ECn& D,ECn& P,ECn& Q)
{
ZZn x,y,Ax,Ay,Cx,Cy,lam1,lam2;
ZZn2 u,w;
big ptr1,ptr2;
extract(A,Ax,Ay);
extract(C,Cx,Cy);
double_add(B,A,D,C,ptr1,ptr2); // adds B to A and D to C
// uses Montgomery's trick
// returns line slopes in ptr1 and ptr2
if (A.iszero() || C.iszero()) return (ZZn2)1;
if (ptr1==NULL || ptr2==NULL) return (ZZn2)0;
//
// Recall that Q and C are "really" of the form [(-x,0),(0,y)]
// The slope of the real curve is -i*slope of the twist
// [(iQy-Ay) - m1(-Qx-Ax)]/(Py-iCy)+i.m2(Px+Cx)
// Instead of division, calculate conjugate and multiply (remember Fermat!)
//
lam1=ptr1;
lam2=ptr2;
extract(Q,x,y);
Ax+=x; // numerator
Ax*=lam1;
u.set(Ax-Ay,y);
extract(P,x,y);
Cx+=x; // denominator
Cx*=lam2;
w.set(y,Cy-Cx); // conjugate trick !
// and don't forget the -i on the slope!
return (w*u);
}
//
// New Weil Pairing - note denominator elimination has been applied
//
// nw(P,Q) = [m(P,Q)/m(Q,P)]^(p-1)
//
// P(x,y) is a point of order q. Q(x,y) is a point of order q.
//
BOOL nw(ECn& P,ECn& Q,Big& q,ZZn& r)
{
ZZn2 m=1;
int i,nb;
ECn A=P;
ECn B=Q;
nb=bits(q);
for (i=nb-2;i>=0;i--)
{ // one loop !
m*=m;
m*=g(A,A,B,B,P,Q);
if (bit(q,i))
m*=g(A,P,B,Q,P,Q);
}
m=conj(m)/m; // raise to power of (p-1)
if (!A.iszero() || m.iszero()) return FALSE;
if (m.isunity()) return FALSE;
r=real(m);
return TRUE;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha512 sh;
shs512_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs512_process(&sh,string[i]);
}
shs512_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H2(ZZn x)
{ // Hash an Fp to a big number
sha sh;
Big a,h,p;
char s[20];
int m;
shs_init(&sh);
a=(Big)x;
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
shs_hash(&sh,s);
h=from_binary(20,s);
return h;
}
// Hash and map a Client Identity to a curve point E_(Fp)
ECn hash_and_map(char *ID,Big cof)
{
ECn Q;
Big x0=H1(ID);
while (!Q.set(x0)) x0+=1;
Q*=cof;
return Q;
}
/* Note that if #E(Fp) = p+1-t
then #E(Fp2) = (p+1-t)(p+1+t) (a multiple of #E(Fp))
(Weil's Theorem)
*/
int main()
{
ifstream common("k2.ecs"); // elliptic curve parameters
miracl* mip=&precision;
ECn Alice,Bob,sA,sB;
ECn B2,Server,sS;
ZZn res,sp,ap,bp;
Big t,r,a,b,s,ss,p,q,x,y,B,cof,cf,cf2;
int bits,A;
time_t seed;
common >> bits;
mip->IOBASE=16;
common >> p;
common >> A;
common >> B;
common >> cof;
common >> q;
t=p+1-cof*q;
cf= (p+1-t)/q; // q divides p+1 (for k=2 condition)
cf2=(p+1+t)/q; // and therefore also divides t (as it divides r)
// this co-factor is in fact not needed....
time(&seed);
irand((long)seed);
mip->IOBASE=16;
// hash Identities to curve point
ss=rand(q); // TA's super-secret
cout << "Mapping Server ID to point" << endl;
ecurve(A,-B,p,MR_AFFINE); // twist curve
Server=hash_and_map((char *)"Server",cf2);
cout << "Mapping Alice & Bob ID's to points" << endl;
ecurve(A,B,p,MR_AFFINE);
Alice=hash_and_map((char *)"Alice",cf);
Bob= hash_and_map((char *)"Robert",cf);
// Alice, Bob are points of order q
// Server does not need to be (its order is a multiple of q)
cout << "Alice, Bob and the Server visit Trusted Authority" << endl;
sS=ss*Server;
sA=ss*Alice;
sB=ss*Bob;
cout << "Alice and Server Key exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
if (!nw(sA,Server,q,res)) cout << "Trouble" << endl;
ap=powl(res,a);
if (!nw(Alice,sS,q,res)) cout << "Trouble" << endl;
sp=powl(res,s);
cout << "Alice Key= " << H2(powl(sp,a)) << endl;
cout << "Server Key= " << H2(powl(ap,s)) << endl;
cout << "Bob and Server Key exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
if (!nw(sB,Server,q,res)) cout << "Trouble" << endl;
bp=powl(res,b);
if (!nw(Bob,sS,q,res)) cout << "Trouble" << endl;
sp=powl(res,s);
cout << "Bob's Key= " << H2(powl(sp,b)) << endl;
cout << "Server Key= " << H2(powl(bp,s)) << endl;
return 0;
}