KGC_TEST/miracl/source/curve/pairing/ake2sst.cpp

416 lines
8.2 KiB
C++

/*
Scott's AKE Client/Server testbed
See http://eprint.iacr.org/2002/164
Compile as
cl /O2 /GX /DZZNS=16 ake2sst.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
using COMBA build
Super-Singular curve - Tate pairing
Requires file k2ss.ecs which contains details of supersingular
elliptic curve, with order divisible by q=2^159+2^17+1, and security
multiplier k=2. The prime p is 512 bits
CHANGES: Use twisted curve to avoid ECn2 arithmetic completely
Use Lucas functions to evaluate powers.
Output of tate pairing is now a ZZn (half-size)
Modified to prevent sub-group confinement attack
*/
#include <iostream>
#include <fstream>
#include "ecn.h"
#include <ctime>
#include "zzn2.h"
using namespace std;
Miracl precision(16,0);
// Using SHA-512 as basic hash algorithm
#define HASH_LEN 64
//
// Define one or the other of these
//
// Which is faster depends on the I/M ratio - See imratio.c
// Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE
//
#ifdef MR_AFFINE_ONLY
#define AFFINE
#else
#define PROJECTIVE
#endif
//
// Tate Pairing Code
//
// Extract ECn point in internal ZZn format
//
void extract(ECn& A,ZZn& x,ZZn& y)
{
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
#ifdef PROJECTIVE
void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z)
{
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
#endif
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn2 line(ECn& A,ECn& C,ECn& B,int type,ZZn& slope,ZZn& ex1,ZZn& ex2,ZZn& a,ZZn& d)
{
ZZn2 w;
ZZn x,y,z,t,n=a;
#ifdef AFFINE
extract(A,x,y);
n+=x; n*=slope;
w.set(y,-d); w-=n;
#endif
#ifdef PROJECTIVE
if (type==MR_ADD)
{
ZZn x2,y2,x3,z3;
extract(B,x2,y2);
extract(C,x3,x3,z3);
w.set(slope*(a+x2)-z3*y2,z3*d);
return w;
}
if (type==MR_DOUBLE)
{
ZZn x,y,x3,z3;
extract(A,x,y);
extract(C,x3,x3,z3);
w.set(-(slope*ex2)*a-slope*x+ex1,-(z3*ex2)*d);
return w;
}
#endif
return w;
}
//
// Add A=A+B (or A=A+A)
// Bump up num
//
ZZn2 g(ECn& A,ECn& B,ZZn& a,ZZn& d)
{
int type;
ZZn lam,extra1,extra2;
ECn P=A;
big ptr,ex1,ex2;
// Evaluate line from A - lam is line slope
type=A.add(B,&ptr,&ex1,&ex2);
if (!type) return (ZZn2)1;
lam=ptr; // in projective case slope = lam/A.z
extra1=ex1;
extra2=ex2;
return line(P,A,B,type,lam,extra1,extra2,a,d);
}
//
// Tate Pairing - note denominator elimination has been applied
//
// P is a point of order q. Q(x,y) is a point of order q.
// Note that P is a point on the curve over Fp, Q(x,y) a point on the
// curve E(Fp^2) -> Q([Qx,0],[0,Qy])
// Here we have morphed Q onto the twisted curve E'(Fp)
//
BOOL tate(ECn& P,ECn& Q,Big& q,ZZn& r)
{
int i,nb,qnr;
ZZn2 res;
ZZn a,d;
Big p,x,y,n;
ECn A;
p=get_modulus();
// Note that q is fixed - q.P=2^17*(2^142.P + P) + P
normalise(Q); // make sure z=1
extract(Q,a,d);
qnr=get_mip()->qnr;
if (qnr==-2)
{
a=a/2; /* Convert off twist */
d=d/4;
}
normalise(P);
A=P; // remember A
n=q-1;
nb=bits(n);
res=1;
for (i=nb-2;i>=0;i--)
{
res*=res; // 2 modmul
res*=g(A,A,a,d);
if (bit(n,i))
res*=g(A,P,a,d); // executed just once
}
if (A != -P || res.iszero()) return FALSE;
res=conj(res)/res; // raise to power of (p-1)
r=powl(real(res),(p+1)/q); // raise to power of (p+1)/q
if (r==1) return FALSE;
return TRUE;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha512 sh;
shs512_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs512_process(&sh,string[i]);
}
shs512_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H2(ZZn x)
{ // Hash an Fp to a big number
sha sh;
Big a,h,p;
char s[20];
int m;
shs_init(&sh);
a=(Big)x;
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
shs_hash(&sh,s);
h=from_binary(20,s);
return h;
}
// Hash an Identity to a curve point
ECn Hash(char *ID)
{
ECn T;
Big a=H1(ID);
while (!is_on_curve(a)) a+=1;
T.set(a); // Make sure its on E(F_p)
return T;
}
// Hash an Identity to a curve point and map to point of order q
ECn hash_and_map(char *ID,Big cof)
{
ECn T;
Big a=H1(ID);
while (!is_on_curve(a)) a+=1;
T.set(a);
T*=cof;
return T;
}
/* Note that if #E(Fp) = p+1-t
then #E(Fp2) = (p+1-t)(p+1+t) (a multiple of #E(Fp))
(Weil's Theorem)
*/
int main()
{
ifstream common("k2ss.ecs"); // elliptic curve parameters
miracl* mip=&precision;
ECn Alice,Bob,sA,sB;
ECn Server,sS;
ZZn res,sp,ap,bp;
Big r,a,b,s,ss,p,q,x,y,B,cof;
int i,nbits,A,qnr;
time_t seed;
common >> nbits;
mip->IOBASE=16;
common >> p;
common >> A;
common >> B;
common >> cof;
common >> q;
//cout << "p= " << p << endl;
//cout << "q%cof= " << q*cof << endl;
time(&seed);
irand((long)seed);
//
// initialise twisted curve...
// Server ID is hashed to points on this
//
modulo(p);
qnr=mip->qnr;
#ifdef AFFINE
ecurve(qnr*qnr*A,qnr*qnr*qnr*B,p,MR_AFFINE);
#endif
#ifdef PROJECTIVE
ecurve(qnr*qnr*A,qnr*qnr*qnr*B,p,MR_PROJECTIVE);
#endif
mip->IOBASE=16;
// hash Identity to curve point
// Server does not need to be of order q (its order is a multiple of q)
ss=rand(q); // TA's super-secret
cout << "Mapping Server ID to point on twisted curve" << endl;
Server=Hash((char *)"Server");
cout << "Server visits trusted authority" << endl;
sS=ss*Server;
// initialise curve...
#ifdef AFFINE
ecurve(A,B,p,MR_AFFINE);
#endif
#ifdef PROJECTIVE
ecurve(A,B,p,MR_PROJECTIVE);
#endif
cout << "Mapping Alice & Bob ID's to points on curve" << endl;
Alice=hash_and_map((char *)"Alice",cof);
Bob= hash_and_map((char *)"Robert",cof);
// Alice, Bob are points of order q
cout << "Alice and Bob visit Trusted Authority" << endl;
sA=ss*Alice;
sB=ss*Bob;
cout << "Alice and Server Key exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
//for (i=0;i<10000;i++)
if (!tate(sA,Server,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
ap=powl(res,a);
if (!tate(Alice,sS,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=powl(res,s);
cout << "Alice Key= " << H2(powl(sp,a)) << endl;
cout << "Server Key= " << H2(powl(ap,s)) << endl;
cout << "Bob and Server Key exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
if (!tate(sB,Server,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
bp=powl(res,b);
if (!tate(Bob,sS,q,res)) cout << "Trouble" << endl;
sp=powl(res,s);
cout << "Bob Key= " << H2(powl(sp,b)) << endl;
cout << "Server Key= " << H2(powl(bp,s)) << endl;
cout << "Alice and Bob's attempted Key exchange" << endl;
if (!tate(Alice,sB,q,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
bp=powl(res,b);
if (!tate(Bob,sA,q,res)) cout << "Trouble" << endl;
ap=powl(res,a);
cout << "Alice Key= " << H2(powl(bp,a)) << endl;
cout << "Bob Key= " << H2(powl(ap,b)) << endl;
return 0;
}