408 lines
7.7 KiB
C++
408 lines
7.7 KiB
C++
/*
|
|
Scott's AKE Client/Server testbed
|
|
|
|
See http://eprint.iacr.org/2002/164
|
|
|
|
Compile as
|
|
cl /O2 /GX /DZZNS=16 ake4cpt.cpp zzn4.cpp zzn2.cpp ecn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
|
|
Fastest using COMBA build for 512-bit mod-mul
|
|
|
|
Cocks-Pinch curve - Tate pairing
|
|
|
|
The file k4.ecs is required
|
|
Security is G192/F2048 (192-bit group, 2048-bit field)
|
|
|
|
Modified to prevent sub-group confinement attack
|
|
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <string.h>
|
|
#include "ecn.h"
|
|
#include <ctime>
|
|
#include "ecn2.h"
|
|
#include "zzn4.h"
|
|
|
|
using namespace std;
|
|
|
|
Miracl precision(16,0);
|
|
|
|
// Using SHA-1 as basic hash algorithm
|
|
|
|
#define HASH_LEN 20
|
|
|
|
//
|
|
// Define one or the other of these
|
|
//
|
|
// Which is faster depends on the I/M ratio - See imratio.c
|
|
// Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE
|
|
//
|
|
|
|
#ifdef MR_AFFINE_ONLY
|
|
#define AFFINE
|
|
#else
|
|
#define PROJECTIVE
|
|
#endif
|
|
|
|
//
|
|
// Tate Pairing Code
|
|
//
|
|
// Extract ECn point in internal ZZn format
|
|
//
|
|
|
|
void extract(ECn& A,ZZn& x,ZZn& y)
|
|
{
|
|
x=(A.get_point())->X;
|
|
y=(A.get_point())->Y;
|
|
}
|
|
|
|
#ifdef PROJECTIVE
|
|
void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z)
|
|
{
|
|
big t;
|
|
x=(A.get_point())->X;
|
|
y=(A.get_point())->Y;
|
|
t=(A.get_point())->Z;
|
|
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
|
|
else z=t;
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Line from A to destination C. Let A=(x,y)
|
|
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
|
|
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
|
|
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
|
|
//
|
|
|
|
ZZn4 line(ECn& A,ECn& C,ZZn& slope,ZZn2& Qx,ZZn2& Qy)
|
|
{
|
|
ZZn4 w;
|
|
ZZn2 m=Qx;
|
|
ZZn x,y,z,t;
|
|
#ifdef AFFINE
|
|
extract(A,x,y);
|
|
m-=x; m*=slope;
|
|
w.set((ZZn2)-y,Qy); w-=m;
|
|
#endif
|
|
#ifdef PROJECTIVE
|
|
extract(A,x,y,z);
|
|
|
|
x*=z;
|
|
t=z; z*=z; z*=t;
|
|
x*=slope;
|
|
t=slope*z;
|
|
m*=t;
|
|
m-=x; t=z;
|
|
extract(C,x,x,z);
|
|
m+=(z*y); t*=z;
|
|
|
|
w.set(m,-Qy*t);
|
|
|
|
#endif
|
|
|
|
return w;
|
|
}
|
|
|
|
//
|
|
// Add A=A+B (or A=A+A)
|
|
// Bump up num
|
|
//
|
|
|
|
ZZn4 g(ECn& A,ECn& B,ZZn2& Qx,ZZn2& Qy)
|
|
{
|
|
int type;
|
|
ZZn lam;
|
|
ZZn4 val;
|
|
big ptr;
|
|
ECn P=A;
|
|
|
|
// Evaluate line from A
|
|
type=A.add(B,&ptr);
|
|
if (!type) return (ZZn4)1;
|
|
lam=ptr;
|
|
val=line(P,A,lam,Qx,Qy);
|
|
//cout << "val= " << val << endl;
|
|
//exit(0);
|
|
return val;
|
|
}
|
|
|
|
//
|
|
// Tate Pairing - note denominator elimination has been applied
|
|
//
|
|
// P is a point of order q. Q(x,y) is a point of order m.q.
|
|
// Note that P is a point on the curve over Fp, Q(x,y) a point on the
|
|
// extension field Fp^2
|
|
//
|
|
|
|
BOOL tate(ECn& P,ECn2 Q,Big& q,Big *cf,ZZn2 &Fr,ZZn2& r)
|
|
{
|
|
int i,nb;
|
|
ECn A;
|
|
ZZn4 w,res;
|
|
ZZn4 a[2];
|
|
ZZn2 Qx,Qy;
|
|
// ZZn4 X,Y;
|
|
|
|
Q.get(Qx,Qy);
|
|
|
|
Qx=txd(Qx);
|
|
Qy=txd(txd(Qy));
|
|
|
|
res=1;
|
|
|
|
/* Left to right method */
|
|
A=P;
|
|
nb=bits(q);
|
|
for (i=nb-2;i>=0;i--)
|
|
{
|
|
res*=res;
|
|
res*=g(A,A,Qx,Qy);
|
|
if (bit(q,i))
|
|
res*=g(A,P,Qx,Qy);
|
|
}
|
|
|
|
if (!A.iszero() || res.iszero()) return FALSE;
|
|
w=res;
|
|
|
|
w.conj(); // ^(p^2-1)
|
|
|
|
res=w/res;
|
|
|
|
res.mark_as_unitary();
|
|
|
|
a[0]=a[1]=res;
|
|
a[0].powq(Fr);
|
|
res=pow(2,a,cf);
|
|
|
|
r=real(res); // compression
|
|
|
|
// r=powl(real(res),cf[0]*get_modulus()+cf[1]); // ^(p*p+1)/q
|
|
|
|
if (r.isunity()) return FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
//
|
|
// Hash functions
|
|
//
|
|
|
|
Big H1(char *string)
|
|
{ // Hash a zero-terminated string to a number < modulus
|
|
Big h,p;
|
|
char s[HASH_LEN];
|
|
int i,j;
|
|
sha sh;
|
|
|
|
shs_init(&sh);
|
|
|
|
for (i=0;;i++)
|
|
{
|
|
if (string[i]==0) break;
|
|
shs_process(&sh,string[i]);
|
|
}
|
|
shs_hash(&sh,s);
|
|
p=get_modulus();
|
|
h=1; j=0; i=1;
|
|
forever
|
|
{
|
|
h*=256;
|
|
if (j==HASH_LEN) {h+=i++; j=0;}
|
|
else h+=s[j++];
|
|
if (h>=p) break;
|
|
}
|
|
h%=p;
|
|
return h;
|
|
}
|
|
|
|
Big H2(ZZn2 x)
|
|
{ // Hash an Fp2 to a big number
|
|
sha sh;
|
|
Big a,u,v;
|
|
char s[HASH_LEN];
|
|
int m;
|
|
|
|
shs_init(&sh);
|
|
x.get(u,v);
|
|
|
|
a=u;
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&sh,m);
|
|
a/=256;
|
|
}
|
|
a=v;
|
|
while (a>0)
|
|
{
|
|
m=a%256;
|
|
shs_process(&sh,m);
|
|
a/=256;
|
|
}
|
|
shs_hash(&sh,s);
|
|
a=from_binary(HASH_LEN,s);
|
|
return a;
|
|
}
|
|
|
|
// Hash and map a Server Identity to a curve point E(Fp2)
|
|
|
|
ECn2 hash2(char *ID)
|
|
{
|
|
ECn2 T;
|
|
ZZn2 x;
|
|
Big x0,y0=0;
|
|
|
|
x0=H1(ID);
|
|
do
|
|
{
|
|
x.set(x0,y0);
|
|
x0+=1;
|
|
}
|
|
while (!is_on_curve(x));
|
|
T.set(x);
|
|
|
|
return T;
|
|
}
|
|
|
|
// Hash and map a Client Identity to a curve point E(Fp)
|
|
|
|
ECn hash_and_map(char *ID,Big cof)
|
|
{
|
|
ECn Q;
|
|
Big x0=H1(ID);
|
|
|
|
while (!is_on_curve(x0)) x0+=1;
|
|
Q.set(x0); // Make sure its on E(F_p)
|
|
|
|
Q*=cof;
|
|
return Q;
|
|
}
|
|
|
|
void set_frobenius_constant(ZZn2 &X)
|
|
{
|
|
Big p=get_modulus();
|
|
switch (get_mip()->pmod8)
|
|
{
|
|
case 5:
|
|
X.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2
|
|
break;
|
|
case 3: // = (1+sqrt(-1))^(p-1)/2
|
|
X.set((Big)1,(Big)1);
|
|
break;
|
|
case 7:
|
|
X.set((Big)2,(Big)1); // = (2+sqrt(-1))^(p-1)/2
|
|
default: break;
|
|
}
|
|
X=pow(X,(p-1)/2);
|
|
}
|
|
|
|
int main()
|
|
{
|
|
ifstream common("k4.ecs"); // elliptic curve parameters
|
|
miracl* mip=&precision;
|
|
ECn Alice,Bob,sA,sB;
|
|
ECn2 Server,sS;
|
|
ZZn2 res,sp,ap,bp,Fr;
|
|
Big a,b,s,ss,p,q,r,B,cof;
|
|
Big cf[2];
|
|
|
|
int bits,A;
|
|
time_t seed;
|
|
|
|
common >> bits;
|
|
mip->IOBASE=16;
|
|
common >> p;
|
|
common >> A;
|
|
common >> B;
|
|
common >> cof; // #E/q
|
|
common >> q; // low hamming weight q
|
|
common >> cf[0]; // [(p^2+1)/q]/p
|
|
common >> cf[1]; // [(p^2+1)/q]%p
|
|
|
|
cout << "Initialised... " << p%8 << endl;
|
|
|
|
time(&seed);
|
|
irand(1L /*(long)seed*/);
|
|
|
|
#ifdef AFFINE
|
|
ecurve(A,B,p,MR_AFFINE);
|
|
#endif
|
|
#ifdef PROJECTIVE
|
|
ecurve(A,B,p,MR_PROJECTIVE);
|
|
#endif
|
|
|
|
set_frobenius_constant(Fr);
|
|
|
|
mip->IOBASE=16;
|
|
mip->TWIST=MR_QUADRATIC; // map Server to point on twisted curve E(Fp2)
|
|
|
|
// hash Identities to curve point
|
|
|
|
ss=rand(q); // TA's super-secret
|
|
|
|
cout << "Mapping Server ID to point" << endl;
|
|
Server=hash2((char *)"Server");
|
|
|
|
cout << "Mapping Alice & Bob ID's to points" << endl;
|
|
Alice=hash_and_map((char *)"Alice",cof);
|
|
|
|
Bob= hash_and_map((char *)"Robert",cof);
|
|
cout << "Alice, Bob and the Server visit Trusted Authority" << endl;
|
|
|
|
sS=ss*Server;
|
|
sA=ss*Alice;
|
|
sB=ss*Bob;
|
|
|
|
cout << "Alice and Server Key Exchange" << endl;
|
|
|
|
a=rand(q); // Alice's random number
|
|
s=rand(q); // Server's random number
|
|
|
|
if (!tate(sA,Server,q,cf,Fr,res)) cout << "Trouble" << endl;
|
|
|
|
if (powl(res,q)!=(ZZn2)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
ap=powl(res,a);
|
|
|
|
if (!tate(Alice,sS,q,cf,Fr,res)) cout << "Trouble" << endl;
|
|
if (powl(res,q)!=(ZZn2)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
sp=powl(res,s);
|
|
|
|
cout << "Alice Key= " << H2(powl(sp,a)) << endl;
|
|
cout << "Server Key= " << H2(powl(ap,s)) << endl;
|
|
|
|
cout << "Bob and Server Key Exchange" << endl;
|
|
|
|
b=rand(q); // Bob's random number
|
|
s=rand(q); // Server's random number
|
|
|
|
if (!tate(sB,Server,q,cf,Fr,res)) cout << "Trouble" << endl;
|
|
if (powl(res,q)!=(ZZn2)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
bp=powl(res,b);
|
|
|
|
if (!tate(Bob,sS,q,cf,Fr,res)) cout << "Trouble" << endl;
|
|
if (powl(res,q)!=(ZZn2)1)
|
|
{
|
|
cout << "Wrong group order - aborting" << endl;
|
|
exit(0);
|
|
}
|
|
sp=powl(res,s);
|
|
|
|
cout << "Bob's Key= " << H2(powl(sp,b)) << endl;
|
|
cout << "Server Key= " << H2(powl(bp,s)) << endl;
|
|
|
|
return 0;
|
|
}
|