KGC_TEST/miracl/source/curve/pairing/ake8cpt.cpp

452 lines
8.9 KiB
C++

/*
Scott's AKE Client/Server testbed
See http://www.compapp.dcu.ie/research/CA_Working_Papers/wp02.html#0202
Compile as
cl /O2 /GX /DZZNS=16 ake8cpt.cpp zzn8.cpp zzn4.cpp zzn2.cpp ecn4.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
Fastest using COMBA build for 512-bit mod-mul
Cocks-Pinch Curve - Tate pairing
The file k8.ecs is required
Security is G224/F4096 (224-bit group, 4096-bit field)
Modified to prevent sub-group confinement attack
**** NEW **** Based on the observation by R. Granger and D. Page and N.P. Smart in "High Security
Pairing-Based Cryptography Revisited" that multi-exponentiation can be used for the final exponentiation
of the Tate pairing, we suggest the Power Pairing, which calculates E(P,Q,e) = e(P,Q)^e, where the
exponentiation by e is basically for free, as it can be folded into the multi-exponentiation.
*/
#include <iostream>
#include <fstream>
#include <string.h>
#include "ecn.h"
#include <ctime>
#include "ecn4.h"
#include "zzn8.h"
using namespace std;
Miracl precision(16,0);
// Using SHA-1 as basic hash algorithm
#define HASH_LEN 20
//
// Define one or the other of these
//
// Which is faster depends on the I/M ratio - See imratio.c
// Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE
//
#ifdef MR_AFFINE_ONLY
#define AFFINE
#else
#define PROJECTIVE
#endif
//
// Tate Pairing Code
//
// Extract ECn point in internal ZZn format
//
void extract(ECn& A,ZZn& x,ZZn& y)
{
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
#ifdef PROJECTIVE
void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z)
{
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
#endif
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn8 line(ECn& A,ECn& C,ZZn& slope,ZZn4& Qx,ZZn4& Qy)
{
ZZn8 w;
ZZn4 m=Qx;
ZZn x,y,z,t;
#ifdef AFFINE
extract(A,x,y);
m-=x; m*=slope;
w.set((ZZn4)-y,Qy); w-=m;
#endif
#ifdef PROJECTIVE
extract(A,x,y,z);
x*=z; t=z; z*=z; z*=t;
x*=slope; t=slope*z;
m*=t; m-=x; t=z;
extract(C,x,x,z);
m+=(z*y); t*=z;
w.set(m,-Qy*t);
#endif
return w;
}
//
// Add A=A+B (or A=A+A)
// Bump up num
//
ZZn8 g(ECn& A,ECn& B,ZZn4& Qx,ZZn4& Qy)
{
int type;
ZZn lam;
big ptr;
ECn P=A;
// Evaluate line from A
type=A.add(B,&ptr);
if (!type) return (ZZn8)1;
lam=ptr;
return line(P,A,lam,Qx,Qy);
}
//
// Tate Pairing - note denominator elimination has been applied
//
// P is a point of order q. Q(x,y) is a point of order m.q.
// Note that P is a point on the curve over Fp, Q(x,y) a point on the
// extension field Fp^2
//
// New! Power Pairing calculates E(P,Q,e) = e(P,Q)^e at no extra cost!
//
BOOL power_tate(ECn& P,ECn4 Q,Big& q,Big *cf,ZZn2 &Fr,Big &e,ZZn4& r)
{
int i,nb;
ECn A;
ZZn8 w,res,a[4];
ZZn4 Qx,Qy;
ZZn2 x,y;
Big carry,ex[4];
Big p=get_modulus();
Q.get(Qx,Qy);
Qx=txd(Qx);
Qy=txd(txd(Qy));
res=1;
/* Left to right method */
A=P;
nb=bits(q);
for (i=nb-2;i>=0;i--)
{
res*=res;
res*=g(A,A,Qx,Qy);
if (bit(q,i))
res*=g(A,P,Qx,Qy);
}
if (!A.iszero() || res.iszero()) return FALSE;
w=res;
w.powq(Fr); w.powq(Fr); // ^(p^4-1)
w.powq(Fr); w.powq(Fr);
res=w/res;
res.mark_as_unitary();
a[3]=res;
a[2]=a[3]; a[2].powq(Fr);
a[1]=a[2]; a[1].powq(Fr);
a[0]=a[1]; a[0].powq(Fr);
if (e.isone()) for (i=0;i<4;i++) ex[i]=cf[i];
else
{ // cf *= e
carry=0;
for (i=3;i>=0;i--)
carry=mad(cf[i],e,carry,p,ex[i]);
}
res=pow(4,a,ex);
r=real(res); // compression
// r=powl(real(res),cf); // ^(p*p*p*p+1)/q
if (r.isunity()) return FALSE;
return TRUE;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha sh;
shs_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs_process(&sh,string[i]);
}
shs_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H4(ZZn4 x)
{ // Hash an Fp2 to a big number
sha sh;
Big a,u,v;
ZZn2 X,Y;
char s[HASH_LEN];
int m;
shs_init(&sh);
x.get(X,Y);
X.get(u,v);
a=u;
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
a=v;
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
Y.get(u,v);
a=u;
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
a=v;
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
shs_hash(&sh,s);
a=from_binary(HASH_LEN,s);
return a;
}
// Hash and map a Server Identity to a curve point E(Fp4)
ECn4 hash4(char *ID)
{
ECn4 T;
ZZn4 x;
ZZn2 X,Y=0;
Big x0,y0=0;
x0=H1(ID);
do
{
X.set(x0,y0);
x.set(X,Y);
x0+=1;
}
while (!is_on_curve(x));
T.set(x);
return T;
}
// Hash and map a Client Identity to a curve point E(Fp)
ECn hash_and_map(char *ID,Big cof)
{
ECn Q;
Big x0=H1(ID);
while (!is_on_curve(x0)) x0+=1;
Q.set(x0); // Make sure its on E(F_p)
Q*=cof;
return Q;
}
void set_frobenius_constant(ZZn2 &X)
{
Big p=get_modulus();
switch (get_mip()->pmod8)
{
case 5:
X.set((Big)0,(Big)1); // = (sqrt(sqrt(-2))^(p-1)/4
X=pow(X,(p-1)/4);
break;
case 3:
X.set((Big)1,(Big)1);
X=pow(X,(p-3)/4);
break;
case 7:
X.set((Big)2,(Big)1);
X=pow(X,(p-3)/4); // note that 4 does not divide p-1, so this is the best we can do...
default: break;
}
}
int main()
{
ifstream common("k8.ecs"); // elliptic curve parameters
miracl* mip=&precision;
ECn Alice,Bob,sA,sB;
ECn4 Server,sS;
ZZn4 res,sp,ap,bp;
ZZn2 Fr;
Big a,b,s,ss,p,q,B,cof;
Big cf[4];
int i,bitz,A;
time_t seed;
cout << "Started" << endl;
common >> bitz;
mip->IOBASE=16;
common >> p;
common >> A;
common >> B;
common >> cof; // #E/q
common >> q; // low hamming weight q
common >> cf[0]; // [(p^4+1)/q]/(p*p*p)
common >> cf[1]; // [(p^4+1)/q]/(p*p)
common >> cf[2]; // [(p^4+1)/q]/p
common >> cf[3]; // [(p^4+1)/q]%p
cout << "Initialised... " << p%8 << endl;
time(&seed);
irand((long)seed);
#ifdef AFFINE
ecurve(A,B,p,MR_AFFINE);
#endif
#ifdef PROJECTIVE
ecurve(A,B,p,MR_PROJECTIVE);
#endif
set_frobenius_constant(Fr);
//cout << "Fr= " << Fr << endl;
mip->IOBASE=16;
mip->TWIST=MR_QUADRATIC; // map Server to point on twisted curve E(Fp4)
// hash Identities to curve point
ss=rand(q); // TA's super-secret
cout << "Mapping Server ID to point" << endl;
Server=hash4((char *)"Server");
cout << "Mapping Alice & Bob ID's to points" << endl;
Alice=hash_and_map((char *)"Alice",cof);
Bob= hash_and_map((char *)"Robert",cof);
cout << "Alice, Bob and the Server visit Trusted Authority" << endl;
sS=ss*Server;
sA=ss*Alice;
sB=ss*Bob;
cout << "Alice and Server Key Exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
if (!power_tate(sA,Server,q,cf,Fr,a,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn4)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
// ap=powl(res,a);
ap=res;
if (!power_tate(Alice,sS,q,cf,Fr,s,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn4)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
// sp=powl(res,s);
sp=res;
cout << "Alice Key= " << H4(powl(sp,a)) << endl;
cout << "Server Key= " << H4(powl(ap,s)) << endl;
cout << "Bob and Server Key Exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
if (!power_tate(sB,Server,q,cf,Fr,b,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn4)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
// bp=powl(res,b);
bp=res;
if (!power_tate(Bob,sS,q,cf,Fr,s,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn4)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
// sp=powl(res,s);
sp=res;
cout << "Bob's Key= " << H4(powl(sp,b)) << endl;
cout << "Server Key= " << H4(powl(bp,s)) << endl;
return 0;
}