KGC_TEST/miracl/source/curve/pairing/bls_pair.cpp

1704 lines
31 KiB
C++

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
* bls_pair.cpp
*
* BLS curve, ate pairing embedding degree 24, ideal for security level AES-256
*
* Irreducible poly is X^3+n, where n=sqrt(w+sqrt(m)), m= {-1,-2} and w= {0,1,2}
* if p=5 mod 8, n=sqrt(-2)
* if p=3 mod 8, n=1+sqrt(-1)
* if p=7 mod 8, p=2,3 mod 5, n=2+sqrt(-1)
*
* Provides high level interface to pairing functions
*
* GT=pairing(G2,G1)
*
* This is calculated on a Pairing Friendly Curve (PFC), which must first be defined.
*
* G1 is a point over the base field, and G2 is a point over an extension field of degree 3
* GT is a finite field point over the 18-th extension, where 18 is the embedding degree.
*
*/
#define MR_PAIRING_BLS
#include "pairing_3.h"
// BLS curve
//static char param[]= "E000000000058400";
//static char curveB[]="6";
//Better BLS curve
static char param[]= "8010000A00000000";
static char curveB[]="A";
void read_only_error(void)
{
cout << "Attempt to write to read-only object" << endl;
exit(0);
}
// Suitable for p=7 mod 12
void set_frobenius_constant(ZZn2 &X)
{
Big p=get_modulus();
X.set((Big)1,(Big)1); // p=3 mod 8
X=pow(X,(p-7)/12);
}
ZZn24 Frobenius(ZZn24 P, ZZn2 &X, int k)
{
ZZn24 Q=P;
for (int i=0; i<k; i++)
Q.powq(X);
return Q;
}
// Using SHA256 as basic hash algorithm
//
// Hash function
//
#define HASH_LEN 32
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha256 sh;
shs256_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs256_process(&sh,string[i]);
}
shs256_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
void PFC::start_hash(void)
{
shs256_init(&SH);
}
Big PFC::finish_hash_to_group(void)
{
Big hash;
char s[HASH_LEN];
shs256_hash(&SH,s);
hash=from_binary(HASH_LEN,s);
return hash%(*ord);
}
void PFC::add_to_hash(const GT& x)
{
ZZn8 u;
ZZn24 v=x.g;
ZZn4 h,l;
ZZn2 t,b;
Big a;
ZZn xx[8];
int i,j,m;
v.get(u);
u.get(l,h);
l.get(t,b);
t.get(xx[0],xx[1]);
b.get(xx[2],xx[3]);
h.get(t,b);
t.get(xx[4],xx[5]);
b.get(xx[6],xx[7]);
for (i=0;i<8;i++)
{
a=(Big)xx[i];
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
}
void PFC::add_to_hash(const G2& x)
{
ZZn4 X,Y;
ECn4 v=x.g;
Big a;
ZZn2 t,b;
ZZn xx[8];
int i,m;
v.get(X,Y);
X.get(t,b);
t.get(xx[0],xx[1]);
b.get(xx[2],xx[3]);
Y.get(t,b);
t.get(xx[4],xx[5]);
b.get(xx[6],xx[7]);
for (i=0;i<8;i++)
{
a=(Big)xx[i];
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
}
void PFC::add_to_hash(const G1& x)
{
Big a,X,Y;
int i,m;
x.g.get(X,Y);
a=X;
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
a=Y;
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
void PFC::add_to_hash(const Big& x)
{
int m;
Big a=x;
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
void PFC::add_to_hash(char *x)
{
int i=0;
while (x[i]!=0)
{
shs256_process(&SH,x[i]);
i++;
}
}
Big H2(ZZn24 x)
{ // Compress and hash an Fp24 to a big number
sha256 sh;
ZZn8 u;
ZZn4 h,l;
ZZn2 t,b;
Big a,hash,p;
ZZn xx[8];
char s[HASH_LEN];
int i,j,m;
shs256_init(&sh);
x.get(u); // compress to single ZZn4
u.get(l,h);
l.get(t,b);
t.get(xx[0],xx[1]);
b.get(xx[2],xx[3]);
h.get(t,b);
t.get(xx[4],xx[5]);
b.get(xx[6],xx[7]);
for (i=0;i<8;i++)
{
a=(Big)xx[i];
while (a>0)
{
m=a%256;
shs256_process(&sh,m);
a/=256;
}
}
shs256_hash(&sh,s);
hash=from_binary(HASH_LEN,s);
return hash;
}
#ifndef MR_AFFINE_ONLY
void force(ZZn& x,ZZn& y,ZZn& z,ECn& A)
{ // A=(x,y,z)
copy(getbig(x),A.get_point()->X);
copy(getbig(y),A.get_point()->Y);
copy(getbig(z),A.get_point()->Z);
A.get_point()->marker=MR_EPOINT_GENERAL;
}
void extract(ECn &A, ZZn& x,ZZn& y,ZZn& z)
{ // (x,y,z) <- A
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
#endif
void force(ZZn& x,ZZn& y,ECn& A)
{ // A=(x,y)
copy(getbig(x),A.get_point()->X);
copy(getbig(y),A.get_point()->Y);
A.get_point()->marker=MR_EPOINT_NORMALIZED;
}
void extract(ECn& A,ZZn& x,ZZn& y)
{ // (x,y) <- A
if (A.iszero())
{
x=0; y=0;
return;
}
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
//
// This calculates p.A = (X^p,Y^p) quickly using Frobenius
// 1. Extract A(x,y) from twisted curve to point on curve over full extension, as X=i^2.x and Y=i^3.y
// where i=NR^(1/k)
// 2. Using Frobenius calculate (X^p,Y^p)
// 3. map back to twisted curve
// Here we simplify things by doing whole calculation on the twisted curve
//
// Note we have to be careful as in detail it depends on w where p=w mod k
// Its simplest if w=1.
//
ECn4 psi(ECn4 &A,ZZn2 &F,int n)
{
int i;
ECn4 R;
ZZn4 X,Y;
ZZn2 FF,W;
// Fast multiplication of A by q^n
A.get(X,Y);
FF=F*F;
W=txx(txx(txx(FF*FF*FF)));
for (i=0;i<n;i++)
{ // assumes p=7 mod 12
X.powq(W); X=tx(tx(FF*X));
Y.powq(W); Y=tx(tx(tx(FF*F*Y)));
}
R.set(X,Y);
return R;
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn24 line(ECn4& A,ECn4& C,ZZn4& slope,ZZn& Qx,ZZn& Qy)
{
ZZn24 w;
ZZn8 nn,dd;
ZZn4 X,Y;
A.get(X,Y);
nn.set((ZZn4)Qy,Y-slope*X);
dd.set(slope*Qx);
w.set(nn,dd);
return w;
}
//
// Add A=A+B (or A=A+A)
// Return line function value
//
ZZn24 g(ECn4& A,ECn4& B,ZZn& Qx,ZZn& Qy)
{
ZZn4 lam;
ZZn24 r;
ECn4 P=A;
// Evaluate line from A
A.add(B,lam);
if (A.iszero()) return (ZZn24)1;
r=line(P,A,lam,Qx,Qy);
return r;
}
// if multiples of G2 can be precalculated, its a lot faster!
ZZn24 gp(ZZn4* ptable,int &j,ZZn& Px,ZZn& Py)
{
ZZn24 w;
ZZn8 nn,dd;
nn.set(Py,ptable[j+1]);
dd.set(ptable[j]*Px);
j+=2;
w.set(nn,dd);
return w;
}
//
// Spill precomputation on pairing to byte array
//
int PFC::spill(G2& w,char *& bytes)
{
int i,j,len,m;
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
Big n=*x;
if (w.ptable==NULL) return 0;
ZZn2 a,b;
Big X,Y;
m=2*(bits(n)+ham(n)-2);
len=m*4*bytes_per_big;
bytes=new char[len];
for (i=j=0;i<m;i++)
{
w.ptable[i].get(a,b);
a.get(X,Y);
to_binary(X,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(Y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
b.get(X,Y);
to_binary(X,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(Y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
delete [] w.ptable;
w.ptable=NULL;
return len;
}
//
// Restore precomputation on pairing to byte array
//
void PFC::restore(char * bytes,G2& w)
{
int i,j,len,m;
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
Big n=*x;
if (w.ptable!=NULL) return;
ZZn2 a,b;
Big X,Y;
m=2*(bits(n)+ham(n)-2);
len=m*4*bytes_per_big;
w.ptable=new ZZn4[m];
for (i=j=0;i<m;i++)
{
X=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
Y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
a.set(X,Y);
X=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
Y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
b.set(X,Y);
w.ptable[i].set(a,b);
}
for (i=0;i<len;i++) bytes[i]=0;
delete [] bytes;
}
// precompute G2 table for pairing
int PFC::precomp_for_pairing(G2& w)
{
int i,j,nb,len;
ECn4 A,Q,B;
ZZn4 lam,x1,y1;
Big n;
Big X=*x;
A=w.g;
B=A;
n=X;
nb=bits(n);
j=0;
len=2*(nb+ham(n)-2);
w.ptable=new ZZn4[len];
for (i=nb-2;i>=0;i--)
{
Q=A;
// Evaluate line from A to A+A
A.add(A,lam);
Q.get(x1,y1);
w.ptable[j++]=lam; w.ptable[j++]=y1-lam*x1;
if (bit(n,i)==1)
{
Q=A;
A.add(B,lam);
Q.get(x1,y1);
w.ptable[j++]=lam; w.ptable[j++]=y1-lam*x1;
}
}
return len;
}
GT PFC::multi_miller(int n,G2** QQ,G1** PP)
{
GT z;
ZZn *Px,*Py;
int i,j,*k,nb;
ECn4 *Q,*A;
ECn P;
ZZn24 res;
Big X=*x;
Px=new ZZn[n];
Py=new ZZn[n];
Q=new ECn4[n];
A=new ECn4[n];
k=new int[n];
nb=bits(X);
res=1;
for (j=0;j<n;j++)
{
k[j]=0;
P=PP[j]->g; normalise(P); Q[j]=QQ[j]->g;
extract(P,Px[j],Py[j]);
}
for (j=0;j<n;j++) A[j]=Q[j];
for (i=nb-2;i>=0;i--)
{
res*=res;
for (j=0;j<n;j++)
{
if (QQ[j]->ptable==NULL)
res*=g(A[j],A[j],Px[j],Py[j]);
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
if (bit(X,i)==1)
for (j=0;j<n;j++)
{
if (QQ[j]->ptable==NULL)
res*=g(A[j],Q[j],Px[j],Py[j]);
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
if (res.iszero()) return 0;
}
delete [] k;
delete [] A;
delete [] Q;
delete [] Py;
delete [] Px;
z.g=res;
return z;
}
//
// R-ate Pairing G2 x G1 -> GT
//
// P is a point of order q in G1. Q(x,y) is a point of order q in G2.
// Note that Q is a point on the sextic twist of the curve over Fp^2, P(x,y) is a point on the
// curve over the base field Fp
//
GT PFC::miller_loop(const G2& QQ,const G1& PP)
{
GT z;
Big n;
int i,j,nb,nbw,nzs;
ECn4 A,Q;
ECn P;
ZZn Px,Py;
BOOL precomp;
ZZn24 r;
Big X=*x;
Q=QQ.g; P=PP.g;
precomp=FALSE;
if (QQ.ptable!=NULL) precomp=TRUE;
normalise(P);
extract(P,Px,Py);
n=X;
A=Q;
nb=bits(n);
r=1;
// Short Miller loop
r.mark_as_miller();
j=0;
for (i=nb-2;i>=0;i--)
{
r*=r;
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else r*=g(A,A,Px,Py);
if (bit(n,i))
{
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else r*=g(A,Q,Px,Py);
}
}
z.g=r;
return z;
}
// Automatically generated by Luis Dominguez
ZZn24 HardExpo(ZZn24 &f3x0, ZZn2 &X, Big &x){
//vector=[ 1, 2, 3 ]
ZZn24 r;
ZZn24 xA;
ZZn24 xB;
ZZn24 t0;
ZZn24 t1;
ZZn24 f3x1;
ZZn24 f3x2;
ZZn24 f3x3;
ZZn24 f3x4;
ZZn24 f3x5;
ZZn24 f3x6;
ZZn24 f3x7;
ZZn24 f3x8;
ZZn24 f3x9;
f3x1=pow(f3x0,x);
f3x2=pow(f3x1,x);
f3x3=pow(f3x2,x);
f3x4=pow(f3x3,x);
f3x5=pow(f3x4,x);
f3x6=pow(f3x5,x);
f3x7=pow(f3x6,x);
f3x8=pow(f3x7,x);
f3x9=pow(f3x8,x);
xA=f3x4*inverse(f3x8)*Frobenius(f3x3,X,1)*Frobenius(inverse(f3x7),X,1)*Frobenius(f3x2,X,2)*Frobenius(inverse(f3x6),X,2)*Frobenius(f3x1,X,3)*Frobenius(inverse(f3x5),X,3)*Frobenius(inverse(f3x4),X,4)*Frobenius(inverse(f3x3),X,5)*Frobenius(inverse(f3x2),X,6)*Frobenius(inverse(f3x1),X,7);
xB=f3x0;
t0=xA*xB;
xA=inverse(f3x3)*inverse(f3x5)*f3x7*f3x9*Frobenius(inverse(f3x2),X,1)*Frobenius(inverse(f3x4),X,1)*Frobenius(f3x6,X,1)*Frobenius(f3x8,X,1)*Frobenius(inverse(f3x1),X,2)*Frobenius(inverse(f3x3),X,2)*Frobenius(f3x5,X,2)*Frobenius(f3x7,X,2)*Frobenius(inverse(f3x0),X,3)*Frobenius(inverse(f3x2),X,3)*Frobenius(f3x4,X,3)*Frobenius(f3x6,X,3)*Frobenius(f3x3,X,4)*Frobenius(f3x5,X,4)*Frobenius(f3x2,X,5)*Frobenius(f3x4,X,5)*Frobenius(f3x1,X,6)*Frobenius(f3x3,X,6)*Frobenius(f3x0,X,7)*Frobenius(f3x2,X,7);
xB=f3x0;
t1=xA*xB;
t0=t0*t0;
t0=t0*t1;
r=t0;
return r;
}
void SoftExpo(ZZn24 &f3, ZZn2 &X){
ZZn24 t0;
int i;
t0=f3; f3.conj(); f3/=t0;
f3.mark_as_regular();
t0=f3; for (i=1;i<=4;i++) f3.powq(X); f3*=t0;
f3.mark_as_unitary();
}
GT PFC::final_exp(const GT& z)
{
GT y;
ZZn24 r=z.g;
Big X=*x;
SoftExpo(r,*frob);
y.g=HardExpo(r,*frob,X);
return y;
}
PFC::PFC(int s, csprng *rng)
{
int mod_bits,words;
if (s!=256)
{
cout << "No suitable curve available" << endl;
exit(0);
}
mod_bits=(5*s)/2;
if (mod_bits%MIRACL==0)
words=(mod_bits/MIRACL);
else
words=(mod_bits/MIRACL)+1;
#ifdef MR_SIMPLE_BASE
miracl *mip=mirsys((MIRACL/4)*words,16);
#else
miracl *mip=mirsys(words,0);
mip->IOBASE=16;
#endif
S=s;
B=new Big;
x=new Big;
mod=new Big;
ord=new Big;
cof=new Big;
npoints=new Big;
trace=new Big;
Beta=new ZZn;
frob=new ZZn2;
*B=curveB;
*x=param;
Big X=*x;
*trace=1+X;
*mod=(1+X+X*X-pow(X,4)+2*pow(X,5)-pow(X,6)+pow(X,8)-2*pow(X,9)+pow(X,10))/3;
*ord=1-pow(X,4)+pow(X,8);
*npoints=*mod+1-*trace;
*cof=(X-1); // Neat trick! Whole group is non-cyclic - just has (x-1)^2 as a factor
// So multiplication by x-1 is sufficient to create a point of order q
ecurve(0,*B,*mod,MR_PROJECTIVE);
*Beta=pow((ZZn)2,(*mod-1)/3);
*Beta*=(*Beta); // right cube root of unity
set_frobenius_constant(*frob);
mip->TWIST=MR_SEXTIC_D; // map Server to point on twisted curve E(Fp2)
RNG=rng;
}
PFC::~PFC()
{
delete B;
delete x;
delete mod;
delete ord;
delete cof;
delete npoints;
delete trace;
delete Beta;
delete frob;
mirexit();
}
void endomorph(ECn &A,ZZn &Beta)
{ // apply endomorphism P(x,y) = (Beta*x,y) where Beta is cube root of unity
// Actually (Beta*x,-y) = x^4.P
ZZn x,y;
x=(A.get_point())->X;
y=(A.get_point())->Y;
y=-y;
x*=Beta;
copy(getbig(x),(A.get_point())->X);
copy(getbig(y),(A.get_point())->Y);
}
G1 PFC::mult(const G1& w,const Big& k)
{
G1 z;
ECn Q;
Big X=*x;
if (w.mtable!=NULL)
{ // we have precomputed values
Big e=k;
if (k<0) e=-e;
int i,j,t=w.mtbits; // MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.mtable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g+=z.g;
if (j>0) z.g+=w.mtable[j];
}
if (k<0) z.g=-z.g;
}
else
{
Big x4,u[2],e=k;
x4=X*X; x4*=x4;
u[0]=e%x4; u[1]=e/x4;
Q=w.g;
endomorph(Q,*Beta);
Q=mul(u[0],w.g,u[1],Q);
z.g=Q;
}
return z;
}
// GLV + Galbraith-Scott
G2 PFC::mult(const G2& w,const Big& k)
{
G2 z;
int i,j;
Big X=*x;
if (w.mtable!=NULL)
{ // we have precomputed values
Big e=k;
if (k<0) e=-e;
int i,j,t=w.mtbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.mtable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g+=z.g;
if (j>0) z.g+=w.mtable[j];
}
if (k<0) z.g=-z.g;
}
else
{
ECn4 Q[8];
Big u[8],e=k;
BOOL small=TRUE;
for (i=0;i<8;i++) {u[i]=e%X; e/=X;}
Q[0]=w.g;
for (i=1;i<8;i++)
{
if (u[i]!=0)
{
small=FALSE;
break;
}
}
if (small)
{
if (u[0]<0)
{
u[0]=-u[0];
Q[0]=-Q[0];
}
z.g=Q[0];
z.g*=u[0];
return z;
}
for (i=1;i<8;i++)
Q[i]=psi(Q[i-1],*frob,1);
for (i=0;i<8;i++)
{
if (u[i]<0)
{u[i]=-u[i];Q[i]=-Q[i];}
}
// simple multi-addition
z.g=mul(8,Q,u);
}
return z;
}
// GLV method + Galbraith-Scott idea
GT PFC::power(const GT& w,const Big& k)
{
GT z;
Big X=*x;
int i;
if (w.etable!=NULL)
{ // precomputation is available
Big e=k;
if (k<0) e=-e;
int i,j,t=w.etbits; // MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.etable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g*=z.g;
if (j>0) z.g*=w.etable[j];
}
if (k<0) z.g=inverse(z.g);
}
else
{
ZZn24 Y[8];
Big u[8],e=k;
for (i=0;i<8;i++) {u[i]=e%X; e/=X;}
Y[0]=w.g;
for (i=1;i<8;i++)
{Y[i]=Y[i-1]; Y[i].powq(*frob);}
// deal with -ve exponents
for (i=0;i<8;i++)
{
if (u[i]<0)
{u[i]=-u[i];Y[i].conj();}
}
// simple multi-exponentiation
z.g=pow(8,Y,u);
}
return z;
}
// Automatically generated by Luis Dominguez
ECn4 HashG2(ECn4& Qx0, Big& x, ZZn2& X){
//vector=[ 1, 2, 3, 4 ]
ECn4 r;
ECn4 xA;
ECn4 xB;
ECn4 xC;
ECn4 t0;
ECn4 t1;
ECn4 Qx0_;
ECn4 Qx1;
ECn4 Qx1_;
ECn4 Qx2;
ECn4 Qx2_;
ECn4 Qx3;
ECn4 Qx3_;
ECn4 Qx4;
ECn4 Qx4_;
ECn4 Qx5;
ECn4 Qx5_;
ECn4 Qx6;
ECn4 Qx6_;
ECn4 Qx7;
ECn4 Qx7_;
ECn4 Qx8;
ECn4 Qx8_;
Qx0_=-(Qx0);
Qx1=x*Qx0;
Qx1_=-(Qx1);
Qx2=x*Qx1;
Qx2_=-(Qx2);
Qx3=x*Qx2;
Qx3_=-(Qx3);
Qx4=x*Qx3;
Qx4_=-(Qx4);
Qx5=x*Qx4;
Qx5_=-(Qx5);
Qx6=x*Qx5;
Qx6_=-(Qx6);
Qx7=x*Qx6;
Qx7_=-(Qx7);
Qx8=x*Qx7;
Qx8_=-(Qx8);
xA=Qx0;
xC=Qx7;
xA+=xC;
xC=psi(Qx2,X,4);
xA+=xC;
xB=Qx0;
xC=Qx7;
xB+=xC;
xC=psi(Qx2,X,4);
xB+=xC;
t0=xA+xB;
xB=Qx2_;
xC=Qx3_;
xB+=xC;
xC=Qx8_;
xB+=xC;
xC=psi(Qx2,X,1);
xB+=xC;
xC=psi(Qx3_,X,1);
xB+=xC;
xC=psi(Qx1,X,6);
xB+=xC;
t0=t0+xB;
xB=Qx4;
xC=Qx5_;
xB+=xC;
xC=psi(Qx0_,X,4);
xB+=xC;
xC=psi(Qx4_,X,4);
xB+=xC;
xC=psi(Qx0,X,5);
xB+=xC;
xC=psi(Qx1_,X,5);
xB+=xC;
xC=psi(Qx2_,X,5);
xB+=xC;
xC=psi(Qx3,X,5);
xB+=xC;
t0=t0+xB;
xA=Qx1;
xC=psi(Qx0_,X,1);
xA+=xC;
xC=psi(Qx1,X,1);
xA+=xC;
xC=psi(Qx4_,X,1);
xA+=xC;
xC=psi(Qx5,X,1);
xA+=xC;
xC=psi(Qx0,X,2);
xA+=xC;
xC=psi(Qx1_,X,2);
xA+=xC;
xC=psi(Qx4_,X,2);
xA+=xC;
xC=psi(Qx5,X,2);
xA+=xC;
xC=psi(Qx0,X,3);
xA+=xC;
xC=psi(Qx1_,X,3);
xA+=xC;
xC=psi(Qx4_,X,3);
xA+=xC;
xC=psi(Qx5,X,3);
xA+=xC;
xC=psi(Qx1,X,4);
xA+=xC;
xC=psi(Qx3,X,4);
xA+=xC;
xC=psi(Qx0_,X,6);
xA+=xC;
xC=psi(Qx2_,X,6);
xA+=xC;
xB=Qx4;
xC=Qx5_;
xB+=xC;
xC=psi(Qx0_,X,4);
xB+=xC;
xC=psi(Qx4_,X,4);
xB+=xC;
xC=psi(Qx0,X,5);
xB+=xC;
xC=psi(Qx1_,X,5);
xB+=xC;
xC=psi(Qx2_,X,5);
xB+=xC;
xC=psi(Qx3,X,5);
xB+=xC;
t1=xA+xB;
t0=t0+t0;
t0=t0+t1;
r=t0;
return r;
}
// random group element
void PFC::random(Big& w)
{
if (RNG==NULL) w=rand(*ord);
else w=strong_rand(RNG,*ord);
}
// random AES key
void PFC::rankey(Big& k)
{
if (RNG==NULL) k=rand(S,2);
else k=strong_rand(RNG,S,2);
}
void PFC::hash_and_map(G2& w,char *ID)
{
int i;
ZZn4 XX;
ZZn2 t;
Big X=*x;
Big x0=H1(ID);
forever
{
x0+=1;
t.set((ZZn)0,(ZZn)x0);
XX.set(t,(ZZn2)0);
if (!w.g.set(XX)) continue;
break;
}
w.g=HashG2(w.g,X,*frob);
}
void PFC::random(G2& w)
{
int i;
ECn4 S;
ZZn4 XX;
ZZn2 t;
Big X=*x;
Big x0;
if (RNG==NULL) x0=rand(*mod);
else x0=strong_rand(RNG,*mod);
forever
{
x0+=1;
t.set((ZZn)0,(ZZn)x0);
XX.set(t,(ZZn2)0);
if (!w.g.set(XX)) continue;
break;
}
w.g=HashG2(w.g,X,*frob);
}
void PFC::hash_and_map(G1& w,char *ID)
{
Big x0=H1(ID);
while (!w.g.set(x0,x0)) x0+=1;
w.g*=*cof;
}
void PFC::random(G1& w)
{
Big x0;
if (RNG==NULL) x0=rand(*mod);
else x0=strong_rand(RNG,*mod);
while (!w.g.set(x0,x0)) x0+=1;
w.g*=*cof;
}
Big PFC::hash_to_aes_key(const GT& w)
{
Big m=pow((Big)2,S);
return H2(w.g)%m;
}
Big PFC::hash_to_group(char *ID)
{
Big m=H1(ID);
return m%(*ord);
}
GT operator*(const GT& x,const GT& y)
{
GT z=x;
z.g*=y.g;
return z;
}
GT operator/(const GT& x,const GT& y)
{
GT z=x;
z.g/=y.g;
return z;
}
//
// spill precomputation on GT to byte array
//
int GT::spill(char *& bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
int len=n*24*bytes_per_big+1;
ZZn8 a,b,c;
ZZn4 f,s;
ZZn2 p,q;
Big x,y;
if (etable==NULL) return 0;
bytes=new char[len];
for (i=j=0;i<n;i++)
{
etable[i].get(a,b,c);
a.get(f,s);
f.get(p,q);
p.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
q.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
s.get(p,q);
p.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
q.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
b.get(f,s);
f.get(p,q);
p.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
q.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
s.get(p,q);
p.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
q.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
c.get(f,s);
f.get(p,q);
p.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
q.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
s.get(p,q);
p.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
q.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
bytes[j]=etbits;
delete [] etable;
etable=NULL;
return len;
}
//
// restore precomputation for GT from byte array
//
void GT::restore(char *bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
// int len=n*24*bytes_per_big;
ZZn8 a,b,c;
ZZn4 f,s;
ZZn2 p,q;
Big x,y;
if (etable!=NULL) return;
etable=new ZZn24[1<<WINDOW_SIZE];
for (i=j=0;i<n;i++)
{
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
p.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
q.set(x,y);
f.set(p,q);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
p.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
q.set(x,y);
s.set(p,q);
a.set(f,s);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
p.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
q.set(x,y);
f.set(p,q);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
p.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
q.set(x,y);
s.set(p,q);
b.set(f,s);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
p.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
q.set(x,y);
f.set(p,q);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
p.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
q.set(x,y);
s.set(p,q);
c.set(f,s);
etable[i].set(a,b,c);
}
etbits=bytes[j];
delete [] bytes;
}
G1 operator+(const G1& x,const G1& y)
{
G1 z=x;
z.g+=y.g;
return z;
}
G1 operator-(const G1& x)
{
G1 z=x;
z.g=-z.g;
return z;
}
//
// spill precomputation on G1 to byte array
//
int G1::spill(char *& bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
int len=n*2*bytes_per_big+1;
Big x,y;
if (mtable==NULL) return 0;
bytes=new char[len];
for (i=j=0;i<n;i++)
{
mtable[i].get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
bytes[j]=mtbits;
delete [] mtable;
mtable=NULL;
return len;
}
//
// restore precomputation for G1 from byte array
//
void G1::restore(char *bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
// int len=n*2*bytes_per_big;
Big x,y;
if (mtable!=NULL) return;
mtable=new ECn[1<<WINDOW_SIZE];
for (i=j=0;i<n;i++)
{
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
mtable[i].set(x,y);
}
mtbits=bytes[j];
delete [] bytes;
}
G2 operator+(const G2& x,const G2& y)
{
G2 z=x;
ECn4 t=y.g;
//t.norm();
z.g+=t;
return z;
}
G2 operator-(const G2& x)
{
G2 z=x;
z.g=-z.g;
return z;
}
//
// spill precomputation on G2 to byte array
//
int G2::spill(char *& bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
int len=n*8*bytes_per_big+1;
ZZn4 a,b;
ZZn2 f,s;
Big x,y;
if (mtable==NULL) return 0;
bytes=new char[len];
for (i=j=0;i<n;i++)
{
mtable[i].get(a,b);
a.get(f,s);
f.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
s.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
b.get(f,s);
f.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
s.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
bytes[j]=mtbits;
delete [] mtable;
mtable=NULL;
return len;
}
//
// restore precomputation for G2 from byte array
//
void G2::restore(char *bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
// int len=n*8*bytes_per_big;
ZZn4 a,b;
ZZn2 f,s;
Big x,y;
if (mtable!=NULL) return;
mtable=new ECn4[1<<WINDOW_SIZE];
for (i=j=0;i<n;i++)
{
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
f.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
s.set(x,y);
a.set(f,s);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
f.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
s.set(x,y);
b.set(f,s);
mtable[i].set(a,b);
}
mtbits=bytes[j];
delete [] bytes;
}
// Fast group membership check for GT
// check if r is of order q
// Test r^q=r^{(p+1-t)/cf}= 1
// so test r^p=r^x and r^cf !=1
// exploit cf=(x-1)*(x-1)/3
BOOL PFC::member(const GT &z)
{
ZZn24 w=z.g;
ZZn24 r=z.g;
ZZn24 rx;
Big X=*x;
if (r*conj(r)!=(ZZn24)1) return FALSE; // not unitary
w.powq(*frob);
rx=pow(r,X);
if (w!=rx) return FALSE;
if (r*pow(rx,X)==rx*rx) return FALSE;
return TRUE;
}
GT PFC::pairing(const G2& x,const G1& y)
{
GT z;
z=miller_loop(x,y);
z=final_exp(z);
return z;
}
GT PFC::multi_pairing(int n,G2 **y,G1 **x)
{
GT z;
z=multi_miller(n,y,x);
z=final_exp(z);
return z;
}
int PFC::precomp_for_mult(G1& w,BOOL small)
{
ECn v=w.g;
int i,j,k,bp,is,t;
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
w.mtable=new ECn[1<<WINDOW_SIZE];
w.mtable[1]=v;
w.mtbits=t;
for (j=0;j<t;j++)
v+=v;
k=1;
for (i=2;i<(1<<WINDOW_SIZE);i++)
{
if (i==(1<<k))
{
k++;
normalise(v);
w.mtable[i]=v;
for (j=0;j<t;j++)
v+=v;
continue;
}
bp=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
w.mtable[i]+=w.mtable[is];
}
bp<<=1;
}
normalise(w.mtable[i]);
}
return (1<<WINDOW_SIZE);
}
int PFC::precomp_for_mult(G2& w,BOOL small)
{
ECn4 v=w.g;
ZZn4 x,y;
int i,j,k,bp,is,t;
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
w.mtable=new ECn4[1<<WINDOW_SIZE];
w.mtable[1]=v;
w.mtbits=t;
for (j=0;j<t;j++)
v+=v;
k=1;
for (i=2;i<(1<<WINDOW_SIZE);i++)
{
if (i==(1<<k))
{
k++;
w.mtable[i]=v;
for (j=0;j<t;j++)
v+=v;
continue;
}
bp=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
w.mtable[i]+=w.mtable[is];
}
bp<<=1;
}
}
return (1<<WINDOW_SIZE);
}
int PFC::precomp_for_power(GT& w,BOOL small)
{
ZZn24 v=w.g;
int i,j,k,bp,is,t;
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
w.etable=new ZZn24[1<<WINDOW_SIZE];
w.etable[0]=1;
w.etable[1]=v;
w.etbits=t;
for (j=0;j<t;j++)
v*=v;
k=1;
for (i=2;i<(1<<WINDOW_SIZE);i++)
{
if (i==(1<<k))
{
k++;
w.etable[i]=v;
for (j=0;j<t;j++)
v*=v;
continue;
}
bp=1;
w.etable[i]=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
w.etable[i]*=w.etable[is];
}
bp<<=1;
}
}
return (1<<WINDOW_SIZE);
}