KGC_TEST/miracl/source/curve/pairing/bn_pair.cpp

1610 lines
29 KiB
C++

/***************************************************************************
*
Copyright 2013 CertiVox UK Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
*
* bn_pair.cpp
*
* BN curve, ate pairing embedding degree 12, ideal for security level AES-128
*
* Irreducible poly is X^3+n, where n=sqrt(w+sqrt(m)), m= {-1,-2} and w= {0,1,2}
* if p=5 mod 8, n=sqrt(-2)
* if p=3 mod 8, n=1+sqrt(-1)
* if p=7 mod 8, p=2,3 mod 5, n=2+sqrt(-1)
*
* Provides high level interface to pairing functions
*
* GT=pairing(G2,G1)
*
* This is calculated on a Pairing Friendly Curve (PFC), which must first be defined.
*
* G1 is a point over the base field, and G2 is a point over an extension field of degree 2
* GT is a finite field point over the 12-th extension, where 12 is the embedding degree.
*
*/
#define MR_PAIRING_BN
#include "pairing_3.h"
// BN curve parameters x,A,B
static char param_128[]="-4080000000000001";
// 766 - bit curve
static char param_192[]="-4000000000000000000000000000000000000000000ABBB5"; // Hamming weight of 6*x+2 = 8
static char curveB[]="2";
void read_only_error(void)
{
cout << "Attempt to write to read-only object" << endl;
exit(0);
}
void set_frobenius_constant(ZZn2 &X)
{
Big p=get_modulus();
switch (get_mip()->pmod8)
{
case 5:
X.set((Big)0,(Big)1); // = (sqrt(-2)^(p-1)/2
break;
case 3: // = (1+sqrt(-1))^(p-1)/2
X.set((Big)1,(Big)1);
break;
case 7:
X.set((Big)2,(Big)1); // = (2+sqrt(-1))^(p-1)/2
default: break;
}
X=pow(X,(p-1)/6);
}
// Using SHA256 as basic hash algorithm
//
// Hash function
//
#define HASH_LEN 32
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
unsigned char s[HASH_LEN];
int i,j;
sha256 sh;
shs256_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs256_process(&sh,string[i]);
}
shs256_hash(&sh,(char *)s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
void PFC::start_hash(void)
{
shs256_init(&SH);
}
Big PFC::finish_hash_to_group(void)
{
Big hash;
char s[HASH_LEN];
shs256_hash(&SH,s);
hash=from_binary(HASH_LEN,s);
return hash%(*ord);
}
Big PFC::finish_hash_to_aes_key(void)
{
Big hash;
char s[HASH_LEN];
shs256_hash(&SH,s);
Big m=pow((Big)2,S);
hash=from_binary(HASH_LEN,s);
return hash%m;
}
void PFC::add_to_hash(const GT& x)
{
ZZn4 u;
ZZn12 v=x.g;
ZZn2 h,l;
Big a;
ZZn xx[6];
int i,j,m;
v.get(u);
u.get(l,h);
l.get(xx[0],xx[1]);
h.get(xx[2],xx[3]);
for (i=0;i<4;i++)
{
a=(Big)xx[i];
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
}
void PFC::add_to_hash(const G2& x)
{
ZZn2 X,Y;
ECn2 v=x.g;
Big a;
ZZn xx[4];
int i,m;
v.get(X,Y);
X.get(xx[0],xx[1]);
Y.get(xx[2],xx[3]);
for (i=0;i<4;i++)
{
a=(Big)xx[i];
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
}
void PFC::add_to_hash(const G1& x)
{
Big a,X,Y;
int i,m;
x.g.get(X,Y);
a=X;
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
a=Y;
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
void PFC::add_to_hash(const Big& x)
{
int m;
Big a=x;
while (a>0)
{
m=a%256;
shs256_process(&SH,m);
a/=256;
}
}
void PFC::add_to_hash(char *x)
{
int i=0;
while (x[i]!=0)
{
shs256_process(&SH,x[i]);
i++;
}
}
Big H2(ZZn12 x)
{ // Compress and hash an Fp12 to a big number
sha256 sh;
ZZn4 u;
ZZn2 h,l;
Big a,hash,p,xx[4];
char s[HASH_LEN];
int i,j,m;
shs256_init(&sh);
x.get(u); // compress to single ZZn4
u.get(l,h);
xx[0]=real(l); xx[1]=imaginary(l); xx[2]=real(h); xx[3]=imaginary(h);
for (i=0;i<4;i++)
{
a=xx[i];
while (a>0)
{
m=a%256;
shs256_process(&sh,m);
a/=256;
}
}
shs256_hash(&sh,s);
hash=from_binary(HASH_LEN,s);
return hash;
}
#ifndef MR_AFFINE_ONLY
void force(ZZn& x,ZZn& y,ZZn& z,ECn& A)
{ // A=(x,y,z)
copy(getbig(x),A.get_point()->X);
copy(getbig(y),A.get_point()->Y);
copy(getbig(z),A.get_point()->Z);
A.get_point()->marker=MR_EPOINT_GENERAL;
}
void extract(ECn &A, ZZn& x,ZZn& y,ZZn& z)
{ // (x,y,z) <- A
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
#endif
void force(ZZn& x,ZZn& y,ECn& A)
{ // A=(x,y)
copy(getbig(x),A.get_point()->X);
copy(getbig(y),A.get_point()->Y);
A.get_point()->marker=MR_EPOINT_NORMALIZED;
}
void extract(ECn& A,ZZn& x,ZZn& y)
{ // (x,y) <- A
if (A.iszero())
{
x=0; y=0;
return;
}
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
// Fast multiplication of A by q (for Trace-Zero group members only)
// Calculate q*P. P(X,Y) -> P(X^p,Y^p))
void q_power_frobenius(ECn2 &A,ZZn2 &F)
{
ZZn2 x,y,z,w,r;
A.get(x,y,z);
w=F*F;
r=F;
x=w*conj(x);
y=r*w*conj(y);
z.conj();
A.set(x,y,z);
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn12 line(ECn2& A,ECn2& C,ECn2& B,ZZn2& slope,ZZn2& extra,BOOL Doubling,ZZn& Qx,ZZn& Qy)
{
ZZn12 w;
ZZn4 nn,dd;
ZZn2 X,Y;
ZZn2 Z3;
C.getZ(Z3);
// Thanks to A. Menezes for pointing out this optimization...
if (Doubling)
{
ZZn2 Z,ZZ;
A.get(X,Y,Z);
ZZ=Z; ZZ*=ZZ;
nn.set((Z3*ZZ)*Qy,slope*X-extra);
dd.set(-(ZZ*slope)*Qx);
}
else
{
ZZn2 X2,Y2;
B.get(X2,Y2);
nn.set(Z3*Qy,slope*X2-Y2*Z3);
dd.set(-slope*Qx);
}
w.set(nn,dd);
return w;
}
//
// Add A=A+B (or A=A+A)
// Return line function value
//
ZZn12 g(ECn2& A,ECn2& B,ZZn& Qx,ZZn& Qy)
{
ZZn2 lam,extra;
ZZn12 r;
ECn2 P=A;
BOOL Doubling;
// Evaluate line from A
Doubling=A.add(B,lam,extra);
if (A.iszero()) return (ZZn12)1;
r=line(P,A,B,lam,extra,Doubling,Qx,Qy);
return r;
}
// if multiples of G2 in e(G2,G1) can be precalculated, its a lot faster!
ZZn12 gp(ZZn2* ptable,int &j,ZZn& Px,ZZn& Py)
{
ZZn12 w;
ZZn4 nn,dd;
nn.set(Py,ptable[j+1]);
dd.set(ptable[j]*Px);
j+=2;
w.set(nn,dd);
return w;
}
//
// Spill precomputation on pairing to byte array
//
int PFC::spill(G2& w,char *& bytes)
{
int i,j,len,m;
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
Big a,b,n;
Big X=*x;
if (w.ptable==NULL) return 0;
if (X<0) n=-(6*X+2);
else n=6*X+2;
m=2*(bits(n)+ham(n));
len=m*2*bytes_per_big;
bytes=new char[len];
for (i=j=0;i<m;i++)
{
w.ptable[i].get(a,b);
to_binary(a,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(b,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
delete [] w.ptable;
w.ptable=NULL;
return len;
}
//
// Restore precomputation on pairing to byte array
//
void PFC::restore(char * bytes,G2& w)
{
int i,j,len,m;
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
Big a,b,n;
Big X=*x;
if (w.ptable!=NULL) return;
if (X<0) n=-(6*X+2);
else n=6*X+2;
m=2*(bits(n)+ham(n)); // number of entries in ptable
len=m*2*bytes_per_big;
w.ptable=new ZZn2[m];
for (i=j=0;i<m;i++)
{
a=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
b=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
w.ptable[i].set(a,b);
}
for (i=0;i<len;i++) bytes[i]=0;
delete [] bytes;
}
// precompute G2 table for pairing
int PFC::precomp_for_pairing(G2& w)
{
int i,j,nb,len;
ECn2 A,Q,B,KA;
ZZn2 lam,x1,y1;
Big n;
Big X=*x;
A=w.g;
A.norm();
B=A; KA=A;
if (X<0) n=-(6*X+2);
else n=6*X+2;
nb=bits(n);
j=0;
len=2*(nb+ham(n)); // **
w.ptable=new ZZn2[len];
get_mip()->coord=MR_AFFINE; // switch to affine
for (i=nb-2;i>=0;i--)
{
Q=A;
// Evaluate line from A to A+A
A.add(A,lam);
Q.get(x1,y1);
w.ptable[j++]=-lam; w.ptable[j++]=lam*x1-y1;
if (bit(n,i)==1)
{
Q=A;
A.add(B,lam);
Q.get(x1,y1);
w.ptable[j++]=-lam; w.ptable[j++]=lam*x1-y1;
}
}
q_power_frobenius(KA,*frob);
if (X<0) A=-A;
Q=A;
A.add(KA,lam);
KA.get(x1,y1);
w.ptable[j++]=-lam; w.ptable[j++]=lam*x1-y1;
q_power_frobenius(KA,*frob); KA=-KA;
Q=A;
A.add(KA,lam);
KA.get(x1,y1);
w.ptable[j++]=-lam; w.ptable[j++]=lam*x1-y1;
get_mip()->coord=MR_PROJECTIVE;
return len;
}
GT PFC::multi_miller(int n,G2** QQ,G1** PP)
{
GT z;
ZZn *Px,*Py;
int i,j,*k,nb;
ECn2 *Q,*A;
ECn P;
ZZn12 res;
Big m;
Big X=*x;
Px=new ZZn[n];
Py=new ZZn[n];
Q=new ECn2[n];
A=new ECn2[n];
k=new int[n];
if (X<0) m=-(6*X+2);
else m=6*X+2;
nb=bits(m);
res=1;
for (j=0;j<n;j++)
{
k[j]=0;
P=PP[j]->g; normalise(P); Q[j]=QQ[j]->g; Q[j].norm();
extract(P,Px[j],Py[j]);
}
for (j=0;j<n;j++) A[j]=Q[j];
for (i=nb-2;i>=0;i--)
{
res*=res;
for (j=0;j<n;j++)
{
if (QQ[j]->ptable==NULL)
res*=g(A[j],A[j],Px[j],Py[j]);
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
if (bit(m,i)==1)
for (j=0;j<n;j++)
{
if (QQ[j]->ptable==NULL)
res*=g(A[j],Q[j],Px[j],Py[j]);
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
if (res.iszero()) return 0;
}
if (X<0) res.conj();
for (j=0;j<n;j++)
{
q_power_frobenius(Q[j],*frob);
if (QQ[j]->ptable==NULL)
{
if (X<0) A[j]=-A[j];
res*=g(A[j],Q[j],Px[j],Py[j]);
}
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
q_power_frobenius(Q[j],*frob);
if (QQ[j]->ptable==NULL)
{
Q[j]=-Q[j];
res*=g(A[j],Q[j],Px[j],Py[j]);
}
else
res*=gp(QQ[j]->ptable,k[j],Px[j],Py[j]);
}
delete [] k;
delete [] A;
delete [] Q;
delete [] Py;
delete [] Px;
z.g=res;
return z;
}
//
// R-ate Pairing G2 x G1 -> GT
//
// P is a point of order q in G1. Q(x,y) is a point of order q in G2.
// Note that Q is a point on the sextic twist of the curve over Fp^2, P(x,y) is a point on the
// curve over the base field Fp
//
GT PFC::miller_loop(const G2& QQ,const G1& PP)
{
GT z;
Big n;
int i,j,nb,nbw,nzs;
ECn2 A,KA,Q;
ECn P;
ZZn Px,Py;
BOOL precomp;
ZZn12 r;
Big X=*x;
Q=QQ.g; P=PP.g;
precomp=FALSE;
if (QQ.ptable!=NULL) precomp=TRUE;
else Q.norm();
normalise(P);
extract(P,Px,Py);
if (X<0) n=-(6*X+2);
else n=6*X+2;
A=Q;
nb=bits(n);
r=1;
// Short Miller loop
r.mark_as_miller();
j=0;
for (i=nb-2;i>=0;i--)
{
r*=r;
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else r*=g(A,A,Px,Py);
if (bit(n,i))
{
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else r*=g(A,Q,Px,Py);
}
}
// Combining ideas due to Longa, Aranha et al. and Naehrig
KA=Q;
q_power_frobenius(KA,*frob);
if (X<0) {A=-A; r.conj();}
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else r*=g(A,KA,Px,Py);
q_power_frobenius(KA,*frob); KA=-KA;
if (precomp) r*=gp(QQ.ptable,j,Px,Py);
else r*=g(A,KA,Px,Py);
z.g=r;
return z;
}
GT PFC::final_exp(const GT& z)
{
GT y;
ZZn12 r,t0,t1;
ZZn12 x0,x1,x2,x3,x4,x5;
Big X=*x;
// The final exponentiation
r=z.g;
t0=r;
r.conj();
r/=t0; // r^(p^6-1)
r.mark_as_regular(); // no longer "miller"
t0=r;
r.powq(*frob); r.powq(*frob);
r*=t0; // r^[(p^6-1)*(p^2+1)]
r.mark_as_unitary(); // from now on all inverses are just conjugates !! (and squarings are faster)
t1=pow(r,-X); // x is sparse..
t0=r; t0.powq(*frob);
x0=t0; x0.powq(*frob);
x0*=(r*t0);
x0.powq(*frob);
x1=inverse(r); // just a conjugation!
x3=t1; x3.powq(*frob);
x4=t1;
t1=pow(t1,-X);
x2=t1; x2.powq(*frob);
x4/=x2;
x2.powq(*frob);
x5=inverse(t1);
t0=pow(t1,-X);
t1=t0; t1.powq(*frob); t0*=t1;
t0*=t0;
t0*=x4;
t0*=x5;
t1=x3*x5;
t1*=t0;
t0*=x2;
t1*=t1;
t1*=t0;
t1*=t1;
t0=t1*x1;
t1*=x0;
t0*=t0;
t0*=t1;
y.g=t0;
return y;
}
PFC::PFC(int s, csprng *rng)
{
int i,j,mod_bits,words;
if (s!=128 && s!=192)
{
cout << "No suitable curve available" << endl;
exit(0);
}
if (s==128) mod_bits=256;
if (s==192) mod_bits=768;
if (mod_bits%MIRACL==0)
words=(mod_bits/MIRACL);
else
words=(mod_bits/MIRACL)+1;
#ifdef MR_SIMPLE_BASE
miracl *mip=mirsys((MIRACL/4)*words,16);
#else
miracl *mip=mirsys(words,0);
mip->IOBASE=16;
#endif
B=new Big;
x=new Big;
mod=new Big;
ord=new Big;
cof=new Big;
npoints=new Big;
trace=new Big;
for (i=0;i<4;i++)
{
WB[i]=new Big;
for (j=0;j<4;j++)
{
BB[i][j]=new Big;
}
}
for (i=0;i<2;i++)
{
W[i]=new Big;
for (j=0;j<2;j++)
{
SB[i][j]=new Big;
}
}
Beta=new ZZn;
frob=new ZZn2;
Big A=0;
*B=curveB;
if (s==128) *x=param_128;
if (s==192) *x=param_192;
S=s;
Big X=*x;
*mod=36*pow(X,4)+36*pow(X,3)+24*X*X+6*X+1;
*trace=6*X*X+1;
*npoints=*mod+1-*trace;
*cof=*mod-1+*trace;
*ord=*npoints;
ecurve(A,*B,*mod,MR_PROJECTIVE);
// Big Lambda=-(36*pow(x,3)+18*x*x+6*x+2); // cube root of unity mod q
*Beta=-(18*pow(X,3)+18*X*X+9*X+2); // cube root of unity mod p
set_frobenius_constant(*frob);
// Use standard Gallant-Lambert-Vanstone endomorphism method for G1
*W[0]=6*X*X+4*X+1; // This is first column of inverse of SB (without division by determinant)
*W[1]=-(2*X+1);
*SB[0][0]=6*X*X+2*X;
*SB[0][1]=-(2*X+1);
*SB[1][0]=-(2*X+1);
*SB[1][1]=-(6*X*X+4*X+1);
// Use Galbraith & Scott Homomorphism idea for G2 & GT ... (http://eprint.iacr.org/2008/117.pdf EXample 5)
*WB[0]=2*X*X+3*X+1; // This is first column of inverse of BB (without division by determinant)
*WB[1]=12*X*X*X+8*X*X+X;
*WB[2]=6*X*X*X+4*X*X+X;
*WB[3]=-2*X*X-X;
*BB[0][0]=X+1; *BB[0][1]=X; *BB[0][2]=X; *BB[0][3]=-2*X;
*BB[1][0]=2*X+1; *BB[1][1]=-X; *BB[1][2]=-(X+1); *BB[1][3]=-X;
*BB[2][0]=2*X; *BB[2][1]=2*X+1; *BB[2][2]=2*X+1; *BB[2][3]=2*X+1;
*BB[3][0]=X-1; *BB[3][1]=4*X+2; *BB[3][2]=-(2*X-1); *BB[3][3]=X-1;
mip->TWIST=MR_SEXTIC_D; // map Server to point on twisted curve E(Fp2)
RNG = rng;
}
PFC::~PFC()
{
int i,j;
delete B;
delete x;
delete mod;
delete ord;
delete cof;
delete npoints;
delete trace;
for (i=0;i<4;i++)
{
delete WB[i];
for (j=0;j<4;j++)
delete BB[i][j];
}
for (i=0;i<2;i++)
{
delete W[i];
for (j=0;j<2;j++)
delete SB[i][j];
}
delete Beta;
delete frob;
mirexit();
}
// GLV method
void glv(const Big &e,Big &r,Big *W[2],Big *B[2][2],Big u[2])
{
int i,j;
Big v[2],w;
for (i=0;i<2;i++)
{
v[i]=mad(*W[i],e,(Big)0,r,w);
u[i]=0;
}
u[0]=e;
for (i=0;i<2;i++)
for (j=0;j<2;j++)
u[i]-=v[j]*(*B[j][i]);
return;
}
void endomorph(ECn &A,ZZn &Beta)
{ // apply endomorphism (x,y) = (Beta*x,y) where Beta is cube root of unity
ZZn x;
x=(A.get_point())->X;
x*=Beta;
copy(getbig(x),(A.get_point())->X);
}
G1 PFC::mult(const G1& w,const Big& k)
{
G1 z;
ECn Q;
if (w.mtable!=NULL)
{ // we have precomputed values
Big e=k;
if (k<0) e=-e;
int i,j,t=w.mtbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.mtable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g+=z.g;
if (j>0) z.g+=w.mtable[j];
}
if (k<0) z.g=-z.g;
}
else
{
Big u[2];
Q=w.g;
glv(k,*ord,W,SB,u);
endomorph(Q,*Beta);
Q=mul(u[0],w.g,u[1],Q);
z.g=Q;
}
return z;
}
// Use Galbraith & Scott Homomorphism idea ...
void galscott(const Big &e,Big &r,Big *WB[4],Big *B[4][4],Big u[4])
{
int i,j;
Big v[4],w;
for (i=0;i<4;i++)
{
v[i]=mad(*WB[i],e,(Big)0,r,w);
u[i]=0;
}
u[0]=e;
for (i=0;i<4;i++)
for (j=0;j<4;j++)
u[i]-=v[j]*(*B[j][i]);
return;
}
// GLV + Galbraith-Scott
G2 PFC::mult(const G2& w,const Big& k)
{
G2 z;
int i;
if (w.mtable!=NULL)
{ // we have precomputed values
Big e=k;
if (k<0) e=-e;
int i,j,t=w.mtbits; //MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.mtable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g+=z.g;
if (j>0) z.g+=w.mtable[j];
}
if (k<0) z.g=-z.g;
}
else
{
ECn2 Q[4];
Big u[4];
BOOL small=TRUE;
galscott(k,*ord,WB,BB,u);
Q[0]=w.g; Q[0].norm();
for (i=1;i<4;i++)
{
if (u[i]!=0)
{
small=FALSE;
break;
}
}
if (small)
{
if (u[0]<0)
{
u[0]=-u[0];
Q[0]=-Q[0];
}
z.g=Q[0];
z.g*=u[0];
z.g.norm();
return z;
}
for (i=1;i<4;i++)
{
Q[i]=Q[i-1];
q_power_frobenius(Q[i],*frob);
}
// deal with -ve multipliers
for (i=0;i<4;i++)
{
if (u[i]<0)
{u[i]=-u[i];Q[i]=-Q[i];}
}
// simple multi-addition
z.g= mul(4,Q,u);
}
z.g.norm();
return z;
}
// GLV method + Galbraith-Scott idea
GT PFC::power(const GT& w,const Big& k)
{
GT z;
int i;
if (w.etable!=NULL)
{ // precomputation is available
Big e=k;
if (k<0) e=-e;
int i,j,t=w.etbits; // MR_ROUNDUP(2*S,WINDOW_SIZE);
j=recode(e,t,WINDOW_SIZE,t-1);
z.g=w.etable[j];
for (i=t-2;i>=0;i--)
{
j=recode(e,t,WINDOW_SIZE,i);
z.g*=z.g;
if (j>0) z.g*=w.etable[j];
}
if (k<0) z.g=inverse(z.g);
}
else
{
ZZn12 Y[4];
Big u[4];
galscott(k,*ord,WB,BB,u);
Y[0]=w.g;
for (i=1;i<4;i++)
{Y[i]=Y[i-1]; Y[i].powq(*frob);}
// deal with -ve exponents
for (i=0;i<4;i++)
{
if (u[i]<0)
{u[i]=-u[i];Y[i].conj();}
}
// simple multi-exponentiation
z.g= pow(4,Y,u);
}
return z;
}
//
// Faster Hashing to G2 - Fuentes-Castaneda, Knapp and Rodriguez-Henriquez
//
void map(ECn2& S,Big &x,ZZn2 &F)
{
ECn2 T,K;
T=S;
T*=x; // one multiplication by x only
T.norm();
K=(T+T);
K+=T;
K.norm();
q_power_frobenius(K,F);
q_power_frobenius(S,F); q_power_frobenius(S,F); q_power_frobenius(S,F);
S+=T; S+=K;
q_power_frobenius(T,F); q_power_frobenius(T,F);
S+=T;
S.norm();
}
// random group element
void PFC::random(Big& w)
{
if (RNG==NULL) w=rand(2*S,2);
else w=strong_rand(RNG,2*S,2);
}
// random AES key
void PFC::rankey(Big& k)
{
if (RNG==NULL) k=rand(S,2);
else k=strong_rand(RNG,S,2);
}
void PFC::hash_and_map(G2& w,char *ID)
{
int i;
ZZn2 X;
Big x0=H1(ID);
forever
{
x0+=1;
X.set((ZZn)1,(ZZn)x0);
if (!w.g.set(X)) continue;
break;
}
map(w.g,*x,*frob);
}
void PFC::random(G2& w)
{
int i;
ZZn2 X;
Big x0;
if (RNG==NULL) x0=rand(*mod);
else x0=strong_rand(RNG, *mod);
forever
{
x0+=1;
X.set((ZZn)1,(ZZn)x0);
if (!w.g.set(X)) continue;
break;
}
map(w.g,*x,*frob);
}
void PFC::hash_and_map(G1& w,char *ID)
{
Big x0=H1(ID);
while (!w.g.set(x0,x0)) x0+=1;
}
void PFC::random(G1& w)
{
Big x0;
if (RNG==NULL) x0=rand(*mod);
else x0=strong_rand(RNG, *mod);
while (!w.g.set(x0,x0)) x0+=1;
}
Big PFC::hash_to_aes_key(const GT& w)
{
Big m=pow((Big)2,S);
return H2(w.g)%m;
}
Big PFC::hash_to_group(char *ID)
{
Big m=H1(ID);
return m%(*ord);
}
Big PFC::hash_to_group(char *buffer, int len)
{
Big h,p;
char s[HASH_LEN];
int i,j;
sha256 sh;
shs256_init(&sh);
for (i=0; i < len; i++)
{
shs256_process(&sh,buffer[i]);
}
shs256_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=(unsigned char)s[j++];
if (h>=p) break;
}
h%=p;
return h % (*ord);
}
GT operator*(const GT& x,const GT& y)
{
GT z=x;
z.g*=y.g;
return z;
}
GT operator/(const GT& x,const GT& y)
{
GT z=x;
z.g/=y.g;
return z;
}
//
// spill precomputation on GT to byte array
//
int GT::spill(char *& bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
int len=n*12*bytes_per_big+1;
ZZn4 a,b,c;
ZZn2 f,s;
Big x,y;
if (etable==NULL) return 0;
bytes=new char[len];
for (i=j=0;i<n;i++)
{
etable[i].get(a,b,c);
a.get(f,s);
f.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
s.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
b.get(f,s);
f.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
s.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
c.get(f,s);
f.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
s.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
bytes[j]=etbits;
delete [] etable;
etable=NULL;
return len;
}
//
// restore precomputation for GT from byte array
//
void GT::restore(char *bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
// int len=n*12*bytes_per_big;
ZZn4 a,b,c;
ZZn2 f,s;
Big x,y;
if (etable!=NULL) return;
etable=new ZZn12[1<<WINDOW_SIZE];
for (i=j=0;i<n;i++)
{
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
f.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
s.set(x,y);
a.set(f,s);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
f.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
s.set(x,y);
b.set(f,s);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
f.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
s.set(x,y);
c.set(f,s);
etable[i].set(a,b,c);
}
etbits=bytes[j];
delete [] bytes;
}
//
// spill precomputation on G1 to byte array
//
int G1::spill(char *& bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
int len=n*2*bytes_per_big+1;
Big x,y;
if (mtable==NULL) return 0;
bytes=new char[len];
for (i=j=0;i<n;i++)
{
mtable[i].get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
bytes[j]=mtbits;
delete [] mtable;
mtable=NULL;
return len;
}
//
// restore precomputation for G1 from byte array
//
void G1::restore(char *bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
// int len=n*2*bytes_per_big;
Big x,y;
if (mtable!=NULL) return;
mtable=new ECn[1<<WINDOW_SIZE];
for (i=j=0;i<n;i++)
{
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
mtable[i].set(x,y);
}
mtbits=bytes[j];
delete [] bytes;
}
G1 operator+(const G1& x,const G1& y)
{
G1 z=x;
z.g+=y.g;
return z;
}
G1 operator-(const G1& x)
{
G1 z=x;
z.g=-z.g;
return z;
}
//
// spill precomputation on G2 to byte array
//
int G2::spill(char *& bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
int len=n*4*bytes_per_big+1;
ZZn2 a,b;
Big x,y;
if (mtable==NULL) return 0;
bytes=new char[len];
for (i=j=0;i<n;i++)
{
mtable[i].get(a,b);
a.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
b.get(x,y);
to_binary(x,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
to_binary(y,bytes_per_big,&bytes[j],TRUE);
j+=bytes_per_big;
}
bytes[j]=mtbits;
delete [] mtable;
mtable=NULL;
return len;
}
//
// restore precomputation for G2 from byte array
//
void G2::restore(char *bytes)
{
int i,j,n=(1<<WINDOW_SIZE);
int bytes_per_big=(MIRACL/8)*(get_mip()->nib-1);
// int len=n*4*bytes_per_big;
ZZn2 a,b;
Big x,y;
if (mtable!=NULL) return;
mtable=new ECn2[1<<WINDOW_SIZE];
for (i=j=0;i<n;i++)
{
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
a.set(x,y);
x=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
y=from_binary(bytes_per_big,&bytes[j]);
j+=bytes_per_big;
b.set(x,y);
mtable[i].set(a,b);
}
mtbits=mtbits;
delete [] bytes;
}
G2 operator+(const G2& x,const G2& y)
{
G2 z=x;
ECn2 t=y.g;
t.norm();
z.g+=t;
return z;
}
G2 operator-(const G2& x)
{
G2 z=x;
z.g=-z.g;
return z;
}
// test if a ZZn12 element is of order q
// test r^q = r^p+1-t =1, so test r^p=r^(t-1)
BOOL PFC::member(const GT& z)
{
ZZn12 r=z.g;
ZZn12 w=z.g;
Big X=*x;
if (!r.is_unitary()) return FALSE;
if (r*conj(r)!=(ZZn12)1) return FALSE; // not unitary
w.powq(*frob);
r=pow(r,X); r=pow(r,X); r=pow(r,(Big)6); // t-1=6x^2
if (w==r) return TRUE;
return FALSE;
}
GT PFC::pairing(const G2& x,const G1& y)
{
GT z;
z=miller_loop(x,y);
z=final_exp(z);
return z;
}
GT PFC::multi_pairing(int n,G2 **y,G1 **x)
{
GT z;
z=multi_miller(n,y,x);
z=final_exp(z);
return z;
}
int PFC::precomp_for_mult(G1& w,BOOL small)
{
ECn v=w.g;
int i,j,k,bp,is,t;
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
w.mtable=new ECn[1<<WINDOW_SIZE];
w.mtable[1]=v;
w.mtbits=t;
for (j=0;j<t;j++)
v+=v;
k=1;
for (i=2;i<(1<<WINDOW_SIZE);i++)
{
if (i==(1<<k))
{
k++;
normalise(v);
w.mtable[i]=v;
for (j=0;j<t;j++)
v+=v;
continue;
}
bp=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
w.mtable[i]+=w.mtable[is];
}
bp<<=1;
}
normalise(w.mtable[i]);
}
return (1<<WINDOW_SIZE);
}
int PFC::precomp_for_mult(G2& w,BOOL small)
{
ECn2 v;
ZZn2 x,y;
int i,j,k,bp,is,t;
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
w.g.norm();
v=w.g;
w.mtable=new ECn2[1<<WINDOW_SIZE];
w.mtable[1]=v;
w.mtbits=t;
for (j=0;j<t;j++)
v+=v;
k=1;
for (i=2;i<(1<<WINDOW_SIZE);i++)
{
if (i==(1<<k))
{
k++;
v.norm();
w.mtable[i]=v;
for (j=0;j<t;j++)
v+=v;
continue;
}
bp=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
w.mtable[i]+=w.mtable[is];
}
bp<<=1;
}
w.mtable[i].norm();
}
return (1<<WINDOW_SIZE);
}
int PFC::precomp_for_power(GT& w,BOOL small)
{
ZZn12 v=w.g;
int i,j,k,bp,is,t;
if (small) t=MR_ROUNDUP(2*S,WINDOW_SIZE);
else t=MR_ROUNDUP(bits(*ord),WINDOW_SIZE);
w.etable=new ZZn12[1<<WINDOW_SIZE];
w.etable[0]=1;
w.etable[1]=v;
w.etbits=t;
for (j=0;j<t;j++)
v*=v;
k=1;
for (i=2;i<(1<<WINDOW_SIZE);i++)
{
if (i==(1<<k))
{
k++;
w.etable[i]=v;
for (j=0;j<t;j++)
v*=v;
continue;
}
bp=1;
w.etable[i]=1;
for (j=0;j<k;j++)
{
if (i&bp)
{
is=1<<j;
w.etable[i]*=w.etable[is];
}
bp<<=1;
}
}
return (1<<WINDOW_SIZE);
}